Tesis > Documento


Ver el documento (formato PDF)   González Solveyra, Estefanía.  "Efectos de nanoconfinamiento de agua en óxidos mesoporosos: de la simulación molecular al diseño y la síntesis de materiales"  (2014-04-16)
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires
URL:
     
Resumen:
En este trabajo de tesis se emplearon herramientas de simulación molecular clásica junto con distintas estrategias de síntesis y caracterización para explorar la relación entre nanoconfinamiento y propiedades de agua en materiales mesoporosos. Los óxidos mesoporosos son materiales que presentan poros monodispersos (2-50 nm) altamente ordenados y de elevada área específica (100-1000 m2/g). La precisión con que pueden controlarse las dimensiones, la interconectividad y la morfología de los poros en la escala nanométrica, da lugar a propiedades sumamente particulares, de interés en multitud de aplicaciones tecnológicas: (foto)catálisis, sorción, sensores, biomateriales, involucrando casi todas ellas la inteacción con H2O. En base a ello, se decidió investigar los aspectos físico-químicos del agua confinada en estos entornos, haciendo foco en fenómenos de equilibrio de fase (equilibrio líquido-vapor y sólido-líquido), estructura y transporte. Además de la motiva- ción tecnológica, estos sistemas son de interés desde el punto de vista fundamental, pues ofrecen un modelo donde estudiar los efectos del confinamiento en la nanoescala. Se emplearon en primer lugar herramientas de simulación molecular de distinta escala (Dinámica Molecular atomística y coarse-grained), caracterizando el comportamiento de agua confinada en matrices porosas de 1-8 nm de diámetro. De esta manera, fue posible describir, desde una perspectiva molecular, la estructura y dinámica del agua, sus propiedades ópticas, así como los diferentes mecanismos de llenado de los nanoporos y los fenómenos de histéresis. También se logró una descripción microscópica del equilibrio sólido-líquido en estos entornos altamente confinados. Se estudió la incidencia del radio del poro, la filicidad y la rugosidad de las paredes sobre los fenómenos mencionados y en particular sobre las isotermas de sorción. Asimismo, se recurrió a un esquema experimental para complementar los resultados computacionales. Los óxidos mesoporosos se sintetizaron en forma de películas delgadas y xerogeles mediante estrategias de síntesis sol-gel y procesos de autoensamblado inducido por evaporación, que combinan la polimerización del óxido inorgánico junto con el autoensamblado de moléculas anfifílicas, que actúan como agentes moldeantes del arreglo poroso. Para la caracterización estructural de los sistemas sintetizados se utilizaron diver- sas técnicas: TEM, SEM, SAXS-2D, GISAXS, XRR, WAXRD. Las propiedades de sorción de agua en mesoporos fueron investigadas en películas delgadas obtenidas por spin y dip coating, mediante Porosimetría Elipsométrica Ambiental y XRR. El aporte original de esta tesis reside en la complementación de técnicas experimentales avanzadas con herramientas de simulación computacional para atender cuestiones de gran interés para la comunidad experimental pero de difícil elucidación dadas las limitaciones de resolución espacio-temporales de las técnicas actuales. Esta estrategia dual constituye una vía extremadamente poderosa para la descripción de fenómenos físicos y químicos en estos sistemas.

Abstract:
In this thesis, classical molecular dynamics along with several synthesis and characterization techniques were employed to explore the relation between nanoconfinement and properties of water in mesoporous materials. Mesoporous oxides present highly ordered monodisperse pores (2-50 nm) and high surface area (100-1000 m2/g). The precision achieved in controlling pore dimensions, interconnectivity, and morphology in the nanometer range gives rise to unique properties with several technological applications, such as (photo) catalysis, sorption, sensors, biomaterials, all of which involve water interactions. Based on this fact, we decided to investigate the physical-chemical aspects of water confined in such environments, focusing on phase transitions phenomena (solid-liquid and liquid-vapor equilibria), structure and transport. Besides the technological motivations, these systems are also very interesting from a fundamental point of view, given that they offer a model in which to study confinement effects in the nanoscale. Firstly we employed molecular simulation techniques at different scales (atomistic and coarse-grained Molecular Dynamics) to characterize the behavior of water confined in porous matrices of 1-8 nm diameter. In his way, we were able to describe from a molecular perspective, water structure and dynamics, its optical properties as well as different filling mechanisms and hysteresis in the nanopores. We also achieved a microscopic description of the liquid-solid equilibrium in these highly confining environments. We study the effect of pore radius, hydrophilicity/hydrophobicity, and surface roughness on the mentioned phenomena, particularly on the sorption isotherms. We also resorted to an experimental scheme to encompass our computational findings. Mesoporous oxides were synthesized as thin films and xerogels by sol-gel reactions and evaporation-induced self-assembly processes, which combine inorganic oxide polymerization with the self-assembly of amphiphilic molecules that act as a template of the porous arrange. Structural characterization of the synthesized materials involved several techniques: TEM, SEM, SAXS-2D, GISAXS, XRR, WAXRD. Water sorption properties in thin films obtained by spin and dip-coating were investigated by Environmental Ellipsometric Porosimetry and XRR. The original contribution of this thesis lies in the complementation of state of the art experimental techniques with computational simulation tools to address issues of great deal of interest for the experimental community but difficult to elucidate given the temporal and spatial limitations of existing techniques. This dual strategy represents a very powerful scheme for the description of physical-chemical phenomena in these systems.

* A este resumen le pueden faltar caracteres especiales. Consulte la versión completa en el documento en formato PDF

Registro:
Título : Efectos de nanoconfinamiento de agua en óxidos mesoporosos: de la simulación molecular al diseño y la síntesis de materiales     =    Water nonoconfinement in mesoporous oxides: from molecular simulations to the design and the synthesis of materials
Autor : González Solveyra, Estefanía
Director : Scherlis Perel, Damián A.
Soler Illia, Galo J.A.A.
Consejero : Aldabe Bilmes, Sara
Jurados : Fernández Prini, Roberto  ; Karim Sapag, Manuel  ; Pastorino, Claudio
Año : 2014-04-16
Editor : Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires
Filiación : Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
Departamento de Química Inorgánica, Analítica y Química Física (DQIAyQF)
Grado obtenido : Doctor de la Universidad de Buenos Aires en el área de Química Inorgánica, Analítica y Química Física
Ubicación : Preservación - http://digital.bl.fcen.uba.ar/gsdl-282/cgi-bin/library.cgi?a=d&c=tesis&d=Tesis_5527_GonzalezSolveyra
Idioma : Español
Area Temática : Química / Nanoquímica
Química / Química Computacional
Palabras claves : OXIDOS MESOPOROSOS; CONFINAMIENTO; ISOTERMAS; AGUA CONFINADA; DIFUSION; PROPIEDADES OPTICAS; EQUILIBRIO SOLIDO-LIQUIDO; TITANIA; MESOPOROUS OXIDES; NANOCONFINEMENT; ISOTHERMS; CONFINED WATER; DIFFUSION; OPTICS PROPERTIES; LIQUID-SOLID EQUILIBRIUM; TITANIA
URL al Documento : 
URL al Registro : 
hola chau _gs.DocumentHeader_ chau2 _documentheader_ chau3
Estadísticas:
     http://digital.bl.fcen.uba.ar
Biblioteca Central Dr. Luis Federico Leloir - Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires
Intendente Güiraldes 2160 - Ciudad Universitaria - Pabellón II - C1428EGA - Tel. (54 11) 4789-9293 int 34