Rodríguez, H.B.; Mirenda, M.; Lagorio, M.G.; San Román, E. "Photophysics at Unusually High Dye Concentrations" (2019) Accounts of Chemical Research. 52(1):110-118
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


ConspectusThe study of the interaction of light with systems at high dye concentrations implies a great challenge because several factors, such as emission reabsorption, dye aggregation, and energy trapping, hinder rationalization and interpretation of the involved photophysical processes. Space constraints induce dye interaction even in the absence of ground state stabilization of dimers and oligomers. At distances on the order of 1 nm, statistical energy traps are usually observed. At longer distances, excited state energy transfer takes place. Most of these factors do not result in ground state spectroscopic changes. Rather, fluorescence phenomena such as inner filter effects, concentration-dependent Stokes' shifts, and changes in quantum yields and decay times are evidenced.Photophysical studies are commonly carried out at high dilution, to minimize dye-dye interactions and emission reabsorption, and in the absence of light scattering. Under these conditions, the physical description of the system becomes rather simple. Fluorescence and triplet quantum yields become molecular properties and can be easily related to ratios of rate constants. However, many systems containing dyes able to fulfill specific functions, whether man-made or biological, are far from being dilute and scattering-free. The photosynthetic apparatus is a paradigmatic example. It is clear that isolation of components allows gathering relevant information about complex systems. However, knowledge of the photophysical behavior in the unaltered environment is essential in most cases.Complexity generally increases when light scattering is present. Despite that, our experience shows that light scattering, when correctly handled, may even simplify the task of unraveling molecular parameters. We show that methods and models aiming at the determination and interpretation of fluorescence and triplet quantum yields as well as energy transfer efficiencies can be developed on the basis of simple light-scattering theories.Photophysical studies were extended to thin films and layer-by-layer assemblies. Procedures are presented for the evaluation of fluorescence reabsorption in concentrated fluid solutions up to the molar level, which are being applied to ionic liquids, in which the emitting species are the bulk ions. Fluorescence reabsorption models proved to be useful in the interpretation of the photophysics of living organisms such as plant leaves and fruits. These new tools allowed the assessment of chlorophyll fluorescence at the chloroplast, leaf and canopy levels, with implications in remote sensing and the development of nondestructive optical methods. © 2018 American Chemical Society.


Documento: Artículo
Título:Photophysics at Unusually High Dye Concentrations
Autor:Rodríguez, H.B.; Mirenda, M.; Lagorio, M.G.; San Román, E.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Diagonal 113 y 64 S/N, La Plata, B1904DPI, Argentina
Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, Buenos Aires, B1650KNA, Argentina
CONICET - Universidad de Buenos Aires, Instituto de Química Física de Los Materiales, Medio Ambiente y Energía, Ciudad Universitaria Pab. II, Buenos Aires, C1428EHA, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Pab. II, Buenos Aires, C1428EHA, Argentina
Página de inicio:110
Página de fin:118
Título revista:Accounts of Chemical Research
Título revista abreviado:Acc. Chem. Res.


  • San Román, E., Nonell, S., Flors, C., Heterogeneous singlet oxygen photosensitizers (2016) Singlet Oxygen: Applications in Biosciences and Nanosciences, 1, pp. 183-208. , Royal Society of Chemistry: United Kingdom, Chapter 9
  • Leyre, S., Coutino-Gonzalez, E., Joos, J.J., Ryckaert, J., Meuret, Y., Poelman, D., Smet, P.F., Hanselaer, P., Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup (2014) Rev. Sci. Instrum., 85, p. 123115
  • Yang, L., Kruse, B., Revised Kubelka-Munk theory. I. Theory and application (2004) J. Opt. Soc. Am. A, 21, pp. 1933-1941
  • Wendlandt, W.W., Hecht, H.G., (1966) Reflectance Spectroscopy, , Wiley: New York
  • Lagorio, M.G., Dicelio, L.E., Litter, M.I., San Román, E., Modeling of fluorescence quantum yields of supported dyes. Aluminium carboxyphthalocyanine on cellulose (1998) J. Chem. Soc., Faraday Trans., 94, pp. 419-425
  • Valeur, B., (2012) Molecular Fluorescence: Principles and Applications, , Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim
  • Braslavsky, S.E., Glossary of terms used in photochemistry, 3rd Ed (2007) Pure Appl. Chem., 79, pp. 293-465
  • Birks, J.B., Fluorescence parameters and their interpretation (1974) J. Lumin., 9, pp. 311-314
  • Mirenda, M., Lagorio, M.G., San Román, E., Photophysics on surfaces: Determination of absolute fluorescence quantum yields from reflectance spectra (2004) Langmuir, 20, pp. 3690-3697
  • Tomasini, E.P., Braslavsky, S.E., San Román, E., Triplet quantum yields in light-scattering powder samples measured by laser-induced optoacoustic spectroscopy (LIOAS) (2012) Photochem. Photobiol. Sci., 11, pp. 1010-1017
  • Birks, J.B., Energy transfer in organic phosphors (1954) Phys. Rev., 94, pp. 1567-1573
  • Birks, J.B., Fluorescence quantum yield measurements (1976) J. Res. Natl. Bur. Stand., Sect. A, 80, pp. 389-399
  • Rodríguez, H.B., Iriel, A., San Román, E., Energy transfer among dyes on particulate solids (2006) Photochem. Photobiol., 82, pp. 200-207
  • Rodríguez, H.B., San Román, E., Excitation Energy Transfer and trapping in dye-loaded solid particles (2008) Ann. N. Y. Acad. Sci., 1130, pp. 247-252
  • Beddard, G.S., Porter, G., Concentration quenching in chlorophyll (1976) Nature, 260, pp. 366-367
  • Banal, J.L., Zhang, B., Jones, D.J., Ghiggino, K.P., Wong, W.W.H., Emissive molecular aggregates and energy migration in luminescent solar concentrators (2017) Acc. Chem. Res., 50, pp. 49-57
  • Gartzia-Rivero, L., Banuelos, J., López-Arbeloa, I., Excitation energy transfer in artificial antennas: From photoactive materials to molecular assemblies (2015) Int. Rev. Phys. Chem., 34, pp. 515-556
  • Rodríguez, H.B., San Román, E., Energy transfer from chemically attached rhodamine 101 to adsorbed methylene blue on microcrystalline cellulose particles (2007) Photochem. Photobiol., 83, pp. 547-555
  • López, S.G., Worringer, G., Rodríguez, H.B., San Román, E., (2010) Trapping of rhodamine 6G excitation energy on cellulose microparticles (2010) Phys. Chem. Chem. Phys., 12, pp. 2246-2253
  • Litman, Y.E., Rodríguez, H.B., Braslavsky, S.E., San Román, E., Photophysics of xanthene dyes at high concentrations in solid environments: Charge transfer assisted triplet formation (2018) Photochem. Photobiol., 94, pp. 865-874
  • Krimer, N.I., Rodrigues, C., Rodríguez, H.B., Mirenda, M., Steady-state fluorescence of highly absorbing samples in transmission geometry: A Simplified quantitative approach considering reabsorption events (2017) Anal. Chem., 89, pp. 640-647
  • Krimer, N.I., Mirenda, M., Re-evaluation of the steady-state self-quenching constant of quinine bisulfate from fluorescence measurements in transmission geometry (2017) Methods Appl. Fluoresc., 5, p. 34001
  • Rodrigues, C.A.B., Graça, C., Maçôas, E., Fedorov, A., Afonso, C.A.M., Martinho, J.M.G., Excited-state proton transfer of fluorescein anion as an ionic liquid component (2013) J. Phys. Chem. B, 117, pp. 14108-14114
  • Krimer, N., Sarmiento, G., Rodrigues, D., Mirenda, M., Unpublished Results
  • Mandal, P.K., Paul, A., Samanta, A., Excitation wavelength dependent fluorescence behavior of the room temperature ionic liquids and dissolved dipolar solutes (2006) J. Photochem. Photobiol., A, 182, pp. 113-120
  • Barna, V., De Cola, L., Mirrorless dye doped ionic liquid lasers (2015) Opt. Express, 23, pp. 11936-11945
  • Loring, R.F., Andersen, H.C., Fayer, M.D., Electronic excited-state transport and trapping in solution (1982) J. Chem. Phys., 76, pp. 2015-2027
  • Kulak, L., Bojarski, C., Forward and reverse electronic energy transport and trapping in solution. II. Numerical results and Monte Carlo simulations (1995) Chem. Phys., 191, pp. 67-86
  • Litman, Y., Rodríguez, H.B., San Román, E., Tuning the concentration of dye loaded polymer films for maximum photosensitization efficiency: Phloxine B in poly(2-hydroxyethyl methacrylate) (2016) Photochem. Photobiol. Sci., 15, pp. 80-85
  • Ezquerra Riega, S.D., Rodríguez, H.B., San Román, E., Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Self-quenching by photoactive energy traps (2017) Methods Appl. Fluoresc., 5, p. 14010
  • Rodríguez, H.B., Lagorio, M.G., San Román, E., Rose bengal adsorbed on microgranular cellulose: Evidence on fluorescent dimers (2004) Photochem. Photobiol. Sci., 3, pp. 674-680
  • Litman, Y., Voss, M.G., Rodríguez, H.B., San Román, E., Effect of concentration on the formation of rose bengal triplet state on microcrystalline cellulose: A combined laser-induced optoacoustic spectroscopy, diffuse reflectance flash photolysis, and luminescence study (2014) J. Phys. Chem. A, 118, pp. 10531-10537
  • Mirenda, M., Strassert, C.A., Dicelio, L.E., San Román, E., Dye-polyelectrolyte layer-by-layer self-assembled materials: Molecular aggregation, structural stability, and singlet oxygen photogeneration (2010) ACS Appl. Mater. Interfaces, 2, pp. 1556-1560
  • Moya, I., Cerovic, Z.G., Papageorgiou, G.C., Govindjee, Remote sensing of chlorophyll fluorescence: Instrumentation and analysis (2004) Chlorophyll A Fluorescence. Advances in Photosynthesis and Respiration, 19, pp. 429-445. , Springer: Dordrecht, the Netherlands, Chapter 16
  • Lagorio, M.G., Cordon, G.B., Iriel, A., Reviewing the relevance of fluorescence in biological systems (2015) Photochem. Photobiol. Sci., 14, pp. 1538-1559
  • Ramos, M.E., Lagorio, M.G., True fluorescence spectra of leaves (2004) Photochem. Photobiol. Sci., 3, pp. 1063-1066
  • Cordon, G.B., Lagorio, M.G., Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models (2006) Photochem. Photobiol. Sci., 5, pp. 735-740
  • Romero, J.M., Cordon, G.B., Lagorio, M.G., Modeling re-absorption of fluorescence from the leaf to the canopy level (2018) Remote Sens. Environ., 204, pp. 138-146
  • Mendes Novo, J., Iriel, A., Lagorio, M.G., Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa) (2012) Photochem. Photobiol. Sci., 11, pp. 724-730
  • Ospina Calvo, B., Parapugna, T.L., Lagorio, M.G., Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: A case study (2017) Photochem. Photobiol. Sci., 16, pp. 710-711
  • Taboada, C., Brunetti, A.E., Pedron, F.N., Carnevale Neto, F., Estrin, D.A., Bari, S.E., Chemes, L.B., Faivovich, J., Naturally occurring fluorescence in frogs (2017) Proc. Natl. Acad. Sci. U. S. A., 114, pp. 3672-3677


---------- APA ----------
Rodríguez, H.B., Mirenda, M., Lagorio, M.G. & San Román, E. (2019) . Photophysics at Unusually High Dye Concentrations. Accounts of Chemical Research, 52(1), 110-118.
---------- CHICAGO ----------
Rodríguez, H.B., Mirenda, M., Lagorio, M.G., San Román, E. "Photophysics at Unusually High Dye Concentrations" . Accounts of Chemical Research 52, no. 1 (2019) : 110-118.
---------- MLA ----------
Rodríguez, H.B., Mirenda, M., Lagorio, M.G., San Román, E. "Photophysics at Unusually High Dye Concentrations" . Accounts of Chemical Research, vol. 52, no. 1, 2019, pp. 110-118.
---------- VANCOUVER ----------
Rodríguez, H.B., Mirenda, M., Lagorio, M.G., San Román, E. Photophysics at Unusually High Dye Concentrations. Acc. Chem. Res. 2019;52(1):110-118.