Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Given an integral commutative residuated lattice L, the product L × L can be endowed with the structure of a commutative residuated lattice with involution that we call a twist-product. In the present paper, we study the subvariety {Mathematical expression} of commutative residuated lattices that can be represented by twist-products. We give an equational characterization of {Mathematical expression}, a categorical interpretation of the relation among the algebraic categories of commutative integral residuated lattices and the elements in {Mathematical expression}, and we analyze the subvariety of representable algebras in {Mathematical expression}. Finally, we consider some specific class of bounded integral commutative residuated lattices {Mathematical expression}, and for each fixed element {Mathematical expression}, we characterize the subalgebras of the twist-product whose negative cone is L in terms of some lattice filters of L, generalizing a result by Odintsov for generalized Heyting algebras. © 2014 Springer Basel.

Registro:

Documento: Artículo
Título:The subvariety of commutative residuated lattices represented by twist-products
Autor:Busaniche, M.; Cignoli, R.
Filiación:Instituto de Matemática Aplicada del Litoral- FIQ, CONICET-UNL, Guemes 3450, Santa Fe, S3000GLN, Argentina
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Idioma: Inglés
Palabras clave:2010 Mathematics Subject Classification: Primary: 03G10, Secondary: 03B47, 03G25
Año:2014
Página de inicio:1
Página de fin:18
DOI: http://dx.doi.org/10.1007/s00012-014-0265-4
Título revista:Algebra Universalis
Título revista abreviado:Algebra Univers.
ISSN:00025240
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_00025240_v_n_p1_Busaniche

Citas:

---------- APA ----------
Busaniche, M. & Cignoli, R. (2014) . The subvariety of commutative residuated lattices represented by twist-products. Algebra Universalis, 1-18.
http://dx.doi.org/10.1007/s00012-014-0265-4
---------- CHICAGO ----------
Busaniche, M., Cignoli, R. "The subvariety of commutative residuated lattices represented by twist-products" . Algebra Universalis (2014) : 1-18.
http://dx.doi.org/10.1007/s00012-014-0265-4
---------- MLA ----------
Busaniche, M., Cignoli, R. "The subvariety of commutative residuated lattices represented by twist-products" . Algebra Universalis, 2014, pp. 1-18.
http://dx.doi.org/10.1007/s00012-014-0265-4
---------- VANCOUVER ----------
Busaniche, M., Cignoli, R. The subvariety of commutative residuated lattices represented by twist-products. Algebra Univers. 2014:1-18.
http://dx.doi.org/10.1007/s00012-014-0265-4