Artículo

Szymanowski, F.; Balatti, G.E.; Ambroggio, E.; Hugo, A.A.; Martini, M.F.; Fidelio, G.D.; Gómez-Zavaglia, A.; Pickholz, M.; Pérez, P.F. "Differential activity of lytic α-helical peptides on lactobacilli and lactobacilli-derived liposomes" (2019) Biochimica et Biophysica Acta - Biomembranes. 1861(6):1069-1077
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Eukaryotic antimicrobial peptides (AMPs) interact with plasma membrane of bacteria, fungi and eukaryotic parasites. Noteworthy, Lactobacillus delbrueckii subsp. lactis (CIDCA 133) and L. delbrueckii subsp. bulgaricus (CIDCA 331) show different susceptibility to human beta-defensins (β-sheet peptides). In the present work we extended the study to α-helical peptides from anuran amphibian (Aurein 1.2, Citropin 1.1 and Maculatin 1.1). We studied the effect on whole bacteria and liposomes formulated with bacterial lipids through growth kinetics, flow cytometry, leakage of liposome content and studies of peptide insertion in lipid monolayers. Growth of strain CIDCA 331 was dramatically inhibited in the presence of all three peptides and minimal inhibitory concentrations were lower than those for strain CIDCA 133. Flow cytometry revealed that AMPs lead to the permeabilization of bacteria. In addition, CIDCA 331-derived liposomes showed high susceptibility, leading to content leakage and structural disruption. Accordingly, peptide insertion in lipid monolayers demonstrated spontaneous interaction of AMPs with CIDCA 331 lipids. In contrast, lipids monolayers from strain CIDCA 133 were less susceptible. Summarizing we demonstrate that the high resistance of the probiotic strain CIDCA 133 to AMPs extends to α helix peptides Aurein, Citropin and Maculatin. This behavior could be ascribed in part to differences in membrane composition. These findings, along with the previously demonstrated resistance to β defensins from human origin, suggest that strain CIDCA 133 is well adapted to host innate immune effectors from both mammals and amphibians thus indicating conserved mechanisms of interaction with key components of the innate immune system. © 2019 Elsevier B.V.

Registro:

Documento: Artículo
Título:Differential activity of lytic α-helical peptides on lactobacilli and lactobacilli-derived liposomes
Autor:Szymanowski, F.; Balatti, G.E.; Ambroggio, E.; Hugo, A.A.; Martini, M.F.; Fidelio, G.D.; Gómez-Zavaglia, A.; Pickholz, M.; Pérez, P.F.
Filiación:Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA,-CCT-CONICET La Plata, CICPBA, UNLP)RA-1900, Argentina
Cátedra de Microbiología, Facultad de Ciencias Exactas (FCE), UNLP, La Plata, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, IFIBA, Buenos Aires, C1428BFA, Argentina
Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica “Dr. Ranwel Caputto”, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X500HUA, Argentina
Departamento de Farmacología, Instituto de la Química y Metabolismo del Fármaco (IQUIMIFA), Facultad de Farmacia y Bioquímica, Cátedra de Química Medicinal, CONICET-Universidad de Buenos Aires, Buenos Aires, C1113AAD, Argentina
Palabras clave:Aurein; Citropin; Lactobacilli; Maculatin; α helix antimicrobial peptides
Año:2019
Volumen:1861
Número:6
Página de inicio:1069
Página de fin:1077
DOI: http://dx.doi.org/10.1016/j.bbamem.2019.03.004
Título revista:Biochimica et Biophysica Acta - Biomembranes
Título revista abreviado:Biochim. Biophys. Acta Biomembr.
ISSN:00052736
CODEN:BBBMB
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_00052736_v1861_n6_p1069_Szymanowski

Referencias:

  • Okumura, R., Takeda, K., Maintenance of intestinal homeostasis by mucosal barriers (2018) Inflamm. Regen., 38, pp. 1-8
  • Mergaert, P., Role of antimicrobial peptides in controlling symbiotic bacterial populations (2018) Nat. Prod. Rep.
  • Kumar, P., Kizhakkedathu, J.N., Straus, S.K., Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo (2018) Biomolecules., 8, pp. 1-24
  • Zhang, L., Gallo, R.L., Antimicrobial peptides (2016) Curr. Biol. Mag., 26, pp. R14-R19
  • Guilhelmelli, F., Vilela, N., Albuquerque, P., Derengowski, L.D.S., Silva-Pereira, I., Kyaw, C.M., Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance (2013) Front. Microbiol., 4, pp. 1-12
  • Kosikowska, P., Lesner, A., Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003–2015) (2016) Expert Opin. Ther. Pat., 26, pp. 689-702
  • Behnsen, J., Deriu, E., Sassone-corsi, M., Raffatellu, M., Probiotics: properties, examples and specific applications (2013) Cold Spring Harb. Perspect. Med., 3, pp. 1-15
  • Hugo, A.A., Kakisu, E., De Antoni, G.L., Pérez, P.F., Lactobacilli antagonize biological effects of enterohaemorrhagic Escherichia coli in vitro (2008) Lett. Appl. Microbiol., 46
  • Hugo, A.A., Rolny, I.S., Romanin, D., Pérez, P.F., Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) stimulates murine macrophages infected with Citrobacter rodentium (2017) World J. Microbiol. Biotechnol., 33
  • Hugo, A.A., De Antoni, G.L., Pe, P.F., (2010), 50, pp. 335-340. , Lactobacillus delbrueckii subsp lactis (strain CIDCA 133) resists the antimicrobial activity triggered by molecules derived from enterocyte-like Caco-2 cells; Hugo, A.A., Tymczyszyn, E.E., Gómez-Zavaglia, A., Pérez, P.F., Effect of human defensins on lactobacilli and liposomes (2012) J. Appl. Microbiol., 113
  • Zavaglia, A., Gomez, E., Disalvo, G.L.D.A., Fatty acid composition and freeze-thaw resistance in lactobacilli (2000) J. Dairy Res., 67, pp. 241-247
  • König, E., Bininda-Emonds, O.R.P., Shaw, C., The diversity and evolution of anuran skin peptides (2015) Peptides., 63, pp. 96-117
  • Apponyi, M.A., Pukala, T.L., Brinkworth, C.S., Maselli, V.M., Bowie, J.H., Tyler, M.J., Booker, G.W., Llewellyn, L.E., Host-defence peptides of Australian anurans: structure, mechanism of action and evolutionary significance (2004) Peptides., 25, pp. 1035-1054
  • Ladram, A., Nicolas, P., Antimicrobial peptides from frog skin: biodiversity and therapeutic promises (2016) Front. Biosci., 21, pp. 1341-1371
  • Doyle, J., Brinkworth, C.S., Wegener, K.L., Carver, J.A., Llewellyn, L.E., Olver, I.N., Bowie, J.H., Tyler, M.J., nNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide, Citropin 1. 1 and synthetic modifications (2003) Eur. J. Biochem., 270, pp. 1141-1153
  • Rozek, T., Wegener, K.L., Bowie, J.H., Olver, I.N., Carver, J.A., Wallace, J.C., Tyler, M.J., The antibiotic and anticancer active Aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis (2000) Eur. J. Biochem., 267, pp. 5330-5341
  • Sohlenkamp, C., Geiger, O., Bacterial membrane lipids: diversity in structures and pathways (2016) FEMS Microbiol. Rev., 40, pp. 133-159
  • de Man, M., JC, Rogosa, M, Sharpe, A medium for the cultivation of lactobacilli (1960) J. Appl. Bacteriol., 23, pp. 130-135
  • Morris, K., Techniques of Lipidology Isolation, Analysis and Identification of Lipids (1986); Angelova, M.I., Dimitrov, D., (1986), Liposome electroformation; Giacometti, A., Cirioni, O., Kamysz, W., Silvestri, C., Simona, M., Prete, D., Licci, A., Scalise, G., In Vitro Activity and Killing Effect of Citropin 1. 1 Against Gram-Positive Pathogens Causing Skin and Soft Tissue Infections, 49 (2005), pp. 2507-2509; Sani MA, T.C., Whitwell, R., Gehman, J.D., Robins-Browne, N., Pantarat, T.J., Attard, E.C.O.-S., Reynolds, F., Separovic, Maculatin 1.1 disrupts Staphylococcus aureus lipid membranes via pore mechanism (2013) Antimicrob. Agent Chemoteraphy, 57, pp. 3593-3600. , doi
  • Laadhari, M., Arnold, A.A., Gravel, A.E., Separovic, F., Marcotte, I., Biochimica et Biophysica Acta Interaction of the antimicrobial peptides caerin 1.1 and Aurein 1.2 with intact bacteria by 2 H solid-state NMR (2016) BBA - Biomembr., 1858, pp. 2959-2964
  • Hazlett, L., Wu, M., Defensins in innate immunity (2011) Cell Tissue Res., 343, pp. 175-188
  • Iimura, M., Gallo, R.L., Hase, K., Miyamoto, Y., Eckmann, L., Kagnoff, M.F., Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens (2005) J. Immunol., 174, pp. 4901-4907
  • Mishra, B., Reiling, S., Zarena, D., Wang, G., Host defense antimicrobial peptides as antibiotics: design and application strategies (2017) Curr. Opin. Chem. Biol., 38, pp. 87-96
  • Marcotte, I., Wegener, K.L., Lam, Y.H., Chia, B.C.S., De Planque, M.R.R., Bowie, J.H., Auger, M., Separovic, F., Interaction of antimicrobial peptides from Australian amphibians with lipid membranes (2003) Chem. Phys. Lipids, 122, pp. 107-120
  • Sani, M., Whitwell, T.C., Separovic, F., Lipid composition regulates the conformation and insertion of the antimicrobial peptide Maculatin 1.1 (2012) BBA Biomembr., 1818, pp. 205-211
  • Hugo, A.A., Rolny, I.S., Romanin, D., Pérez, P.F., Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) stimulates murine macrophages infected with Citrobacter rodentium (2017) World J. Microbiol. Biotechnol., 33
  • Gómez Zavaglia, A., (2000), Quimiotaxonomia de bacterias lácticas. PhD thesis., National University of La Plata; Tymczyszyn, E.E., Del Rosario Díaz, M., Gómez-Zavaglia, A., Disalvo, E.A., Volume recovery, surface properties and membrane integrity of Lactobacillus delbrueckii subsp. bulgaricus dehydrated in the presence of trehalose or sucrose (2007) J. Appl. Microbiol., 103, pp. 2410-2419
  • Hugo, A.A., (2007), Capacidad probiótica de la cepa CIDCA 133: un recorrido desde modelos in vitro a in vivo. PhD thesis, National University of La Plata; Fernandez, D.I., Gehman, J.D., Separovic, F., Membrane interactions of antimicrobial peptides from Australian frogs (2009) Biochim. Biophys. Acta Biomembr., 1788, pp. 1630-1638
  • Ambroggio, E.E., Separovic, F., Bowie, J.H., Fidelio, G.D., Bagatolli, L.A., Direct visualization of membrane leakage induced by the antibiotic (2005) Biophys. J., 89, pp. 1874-1881
  • Balatti, G.E., Ambroggio, E.E., Fidelio, G.D., Martini, M.F., Pickholz, M., Differential interaction of antimicrobial peptides with lipid structures studied by coarse-grained molecular dynamics simulations (2017) Molecules., 22

Citas:

---------- APA ----------
Szymanowski, F., Balatti, G.E., Ambroggio, E., Hugo, A.A., Martini, M.F., Fidelio, G.D., Gómez-Zavaglia, A.,..., Pérez, P.F. (2019) . Differential activity of lytic α-helical peptides on lactobacilli and lactobacilli-derived liposomes. Biochimica et Biophysica Acta - Biomembranes, 1861(6), 1069-1077.
http://dx.doi.org/10.1016/j.bbamem.2019.03.004
---------- CHICAGO ----------
Szymanowski, F., Balatti, G.E., Ambroggio, E., Hugo, A.A., Martini, M.F., Fidelio, G.D., et al. "Differential activity of lytic α-helical peptides on lactobacilli and lactobacilli-derived liposomes" . Biochimica et Biophysica Acta - Biomembranes 1861, no. 6 (2019) : 1069-1077.
http://dx.doi.org/10.1016/j.bbamem.2019.03.004
---------- MLA ----------
Szymanowski, F., Balatti, G.E., Ambroggio, E., Hugo, A.A., Martini, M.F., Fidelio, G.D., et al. "Differential activity of lytic α-helical peptides on lactobacilli and lactobacilli-derived liposomes" . Biochimica et Biophysica Acta - Biomembranes, vol. 1861, no. 6, 2019, pp. 1069-1077.
http://dx.doi.org/10.1016/j.bbamem.2019.03.004
---------- VANCOUVER ----------
Szymanowski, F., Balatti, G.E., Ambroggio, E., Hugo, A.A., Martini, M.F., Fidelio, G.D., et al. Differential activity of lytic α-helical peptides on lactobacilli and lactobacilli-derived liposomes. Biochim. Biophys. Acta Biomembr. 2019;1861(6):1069-1077.
http://dx.doi.org/10.1016/j.bbamem.2019.03.004