Artículo

Zitare, U.A.; Szuster, J.; Scocozza, M.F.; Espinoza-Cara, A.; Leguto, A.J.; Morgada, M.N.; Vila, A.J.; Murgida, D.H. "The role of molecular crowding in long-range metalloprotein electron transfer: Dissection into site- and scaffold-specific contributions" (2019) Electrochimica Acta. 294:117-125
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Here we report the effect of molecular crowding on long-range protein electron transfer (ET) and disentangle the specific responses of the redox site and the protein milieu. To this end, we studied two different one-electron redox proteins that share the cupredoxin fold but differ in the metal center, T1 mononuclear blue copper and binuclear CuA, and generated chimeras with hybrid properties by incorporating different T1 centers within the CuA scaffold or by swapping loops between orthologous proteins from different organisms to perturb the CuA site. The heterogeneous ET kinetics of the different proteins was studied by protein film electrochemistry at variable electronic couplings and in the presence of two different crowding agents. The results reveal a strong frictional control of the ET reactions, which for 10 Å tunnelling distances results in a 90% drop of the ET rate when viscosity is matched to that of the mitochondrial interior (ca. 55 cP) by addition of either crowding agent. The effect is ascribed to the dynamical coupling of the metal site and the milieu, which for T1 is found to be twice stronger than for CuA, and the activation energy of protein-solvent motion that is dictated by the overall scaffold. This work highlights the need of explicitly considering molecular crowding effects in protein ET. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:The role of molecular crowding in long-range metalloprotein electron transfer: Dissection into site- and scaffold-specific contributions
Autor:Zitare, U.A.; Szuster, J.; Scocozza, M.F.; Espinoza-Cara, A.; Leguto, A.J.; Morgada, M.N.; Vila, A.J.; Murgida, D.H.
Filiación:Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Buenos Aires, 1428, Argentina
Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and CONICET, Rosario, 2000, Argentina
Palabras clave:Electron transfer; Frictional control; Loop engineering; Metalloproteins; Molecular crowding; Activation energy; Electron transitions; Friction; Intelligent agents; Metals; Scaffolds; Scaffolds (biology); Dynamical coupling; Electron transfer; Electronic coupling; Metallo-proteins; Metalloprotein; Molecular crowding; Orthologous proteins; Redox proteins; Proteins
Año:2019
Volumen:294
Página de inicio:117
Página de fin:125
DOI: http://dx.doi.org/10.1016/j.electacta.2018.10.069
Título revista:Electrochimica Acta
Título revista abreviado:Electrochim Acta
ISSN:00134686
CODEN:ELCAA
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_00134686_v294_n_p117_Zitare

Referencias:

  • Winkler, J.R., Gray, H.B., Electron flow through metalloproteins (2014) Chem. Rev., 114, pp. 3369-3380
  • Moser, C.C., Sheehan, M.M., Ennist, N.M., Kodali, G., Bialas, C., Englander, M.T., Discher, B.M., Dutton, P.L., De Novo construction of redox active proteins (2016) Methods in Enzymology, pp. 365-388. , Elsevier
  • Liu, J., Chakraborty, S., Hosseinzadeh, P., Yu, Y., Tian, S., Petrik, I., Bhagi, A., Lu, Y., Metalloproteins containing cytochrome, iron–sulfur, or copper redox centers (2014) Chem. Rev., 114, pp. 4366-4469
  • Marcus, R.A., On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions (1965) J. Chem. Phys., 43, pp. 679-701
  • Marcus, R.A., Sutin, N., Electron transfers in chemistry and biology (1985) Biochim. Biophys. Acta Rev. Bioenergies (BBA), 811, pp. 265-322
  • De la Lande, A., Cailliez, F., Salahub, D., Electron transfer reaction in enzymes: vanilla Marcus theory and how to fix them if they do (2017) Simulating Enzyme Reactivity: Computational Methods in Enzyme Catalysis, pp. 89-149
  • Ellis, R.J., Minton, A.P., Join the crowd: cell biology (2003) Nature, 425, pp. 27-28
  • Ellis, R.J., Macromolecular crowding: obvious but underappreciated (2001) Trends Biochem. Sci., 26, pp. 597-604
  • Clarke, R.J., The dipole potential of phospholipid membranes and methods for its detection (2001) Adv. Colloid Interface Sci., 89-90, pp. 263-281
  • Sumi, H., Marcus, R.A., Dynamical effects in electron transfer reactions (1986) J. Chem. Phys., 84, pp. 4894-4914
  • Weaver, M.J., Dynamical solvent effects on activated electron-transfer reactions: principles, pitfalls, and progress (1992) Chem. Rev., 92, pp. 463-480
  • Zusman, L.D., Dynamical solvent effects in electron transfer reactions (1994) Z. Phys. Chem., 186, pp. 1-29
  • Rips, I., Jortner, J., Dynamic solvent effects on outer-sphere electron transfer (1987) J. Chem. Phys., 87, pp. 2090-2104
  • Beratan, D.N., Liu, C., Migliore, A., Polizzi, N.F., Skourtis, S.S., Zhang, P., Zhang, Y., Charge transfer in dynamical biosystems, or the treachery of (static) images (2015) Acc. Chem. Res., 48, pp. 474-481
  • Mishra, A.K., Waldeck, D.H., A unified model for the electrochemical rate constant that incorporates solvent dynamics (2009) J. Phys. Chem. C, 113, pp. 17904-17914
  • Matyushov, D.V., Protein electron transfer: is biology (thermo)dynamic? (2015) J. Phys. Condens. Matter, 27
  • Hervás, M., Navarro, J.A., Effect of crowding on the electron transfer process from plastocyanin and cytochrome c6 to photosystem I: a comparative study from cyanobacteria to green algae (2011) Photosynth. Res., 107, pp. 279-286
  • Schlarb-Ridley, B.G., Mi, H., Teale, W.D., Meyer, V.S., Howe, C.J., Bendall, D.S., Implications of the effects of viscosity, macromolecular crowding, and temperature for the transient interaction between cytochrome f and plastocyanin from the cyanobacterium Phormidium laminosum (2005) Biochemistry, 44, pp. 6232-6238
  • Chi, Q., Zhang, J., Andersen, J.E.T., Ulstrup, J., Ordered assembly and controlled electron transfer of the blue copper protein azurin at gold (111) single-crystal substrates (2001) J. Phys. Chem. B, 105, pp. 4669-4679
  • Fujita, K., Nakamura, N., Ohno, H., Leigh, B.S., Niki, K., Gray, H.B., Richards, J.H., Mimicking Protein−Protein electron Transfer:  voltammetry of Pseudomonas aeruginosa azurin and the Thermus thermophilus CuA domain at ω-derivatized self-assembled-monolayer gold electrodes (2004) J. Am. Chem. Soc., 126, pp. 13954-13961
  • Murgida, D.H., Hildebrandt, P., The heterogeneous electron transfer of cytochrome c adsorbed on Ag electrodes coated with ω-carboxyl alkanethiols. A surface enhanced resonance Raman spectroscopic study (2001) J. Mol. Struct., 565-566, pp. 97-100
  • Kranich, A., Naumann, H., Molina-Heredia, F.P., Moore, H.J., Lee, T.R., Lecomte, S., De, L.R., Murgida, D.H., Gated electron transfer of cytochrome c6 at biomimetic interfaces: a time-resolved SERR study (2009) Phys. Chem. Chem. Phys., 11, pp. 7390-7397
  • Zuo, P., Albrecht, T., Barker, P.D., Murgida, D.H., Hildebrandt, P., Interfacial redox processes of cytochrome b562 (2009) Phys. Chem. Chem. Phys., 11, pp. 7430-7436
  • Capdevila, D.A., Marmisollé, W.A., Williams, F.J., Murgida, D.H., Phosphate mediated adsorption and electron transfer of cytochrome c. A time-resolved SERR spectroelectrochemical study (2013) Phys. Chem. Chem. Phys., 15, pp. 5386-5394
  • Wei, J., Liu, H., Khoshtariya, D.E., Yamamoto, H., Dick, A., Waldeck, D.H., Electron-transfer dynamics of cytochrome C: a change in the reaction mechanism with distance (2002) Angew. Chem. Int. Ed., 41, pp. 4700-4703
  • Yue, H., Khoshtariya, D., Waldeck, D.H., Grochol, J., Hildebrandt, P., Murgida, D.H., On the electron transfer mechanism between cytochrome c and metal electrodes. Evidence for dynamic control at short distances (2006) J. Phys. Chem. B, 110, pp. 19906-19913
  • Avila, A., Gregory, B.W., Niki, K., Cotton, T.M., An electrochemical approach to investigate gated electron transfer using a physiological model system: cytochrome c immobilized on carboxylic acid-terminated alkanethiol self-assembled monolayers on gold electrodes (2000) J. Phys. Chem. B, 104, pp. 2759-2766
  • Khoshtariya, D.E., Dolidze, T.D., Shushanyan, M., Davis, K.L., Waldeck, D.H., van Eldik, R., Fundamental signatures of short- and long-range electron transfer for the blue copper protein azurin at Au/SAM junctions (2010) Proc. Natl. Acad. Sci. Unit. States Am., 107, pp. 2757-2762
  • Khoshtariya, D.E., Dolidze, T.D., Tretyakova, T., Waldeck, D.H., van Eldik, R., Electron transfer with azurin at Au–SAM junctions in contact with a protic ionic melt: impact of glassy dynamics (2013) Phys. Chem. Chem. Phys., 15, p. 16515
  • Jeuken, L.J.C., McEvoy, J.P., Armstrong, F.A., Insights into gated electron-transfer kinetics at the Electrode−Protein interface: a square wave voltammetry study of the blue copper protein azurin (2002) J. Phys. Chem. B, 106, pp. 2304-2313
  • Ly, H.K., Marti, M.A., Martin, D.F., Alvarez-Paggi, D., Meister, W., Kranich, A., Weidinger, I.M., Murgida, D.H., Thermal fluctuations determine the electron-transfer rates of cytochrome c in electrostatic and covalent complexes (2010) ChemPhysChem, 11, pp. 1225-1235
  • Kranich, A., Ly, H.K., Hildebrandt, P., Murgida, D.H., Direct observation of the gating step in protein electron transfer: electric-field-controlled protein dynamics (2008) J. Am. Chem. Soc., 130, pp. 9844-9848
  • Alvarez-Paggi, D., Meister, W., Kuhlmann, U., Weidinger, I., Tenger, K., Zimányi, L., Rákhely, G., Murgida, D.H., Disentangling electron tunneling and protein dynamics of cytochrome c through a rationally designed surface mutation (2013) J. Phys. Chem. B, 117, pp. 6061-6068
  • Henzler-Wildman, K., Kern, D., Dynamic personalities of proteins (2007) Nature, 450, pp. 964-972
  • Nashine, V.C., Hammes-Schiffer, S., Benkovic, S.J., Coupled motions in enzyme catalysis (2010) Curr. Opin. Chem. Biol., 14, pp. 644-651
  • Wei, G., Xi, W., Nussinov, R., Ma, B., Protein ensembles: how does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell (2016) Chem. Rev., 116, pp. 6516-6551
  • Jordanides, X.J., Lang, M.J., Song, X., Fleming, G.R., Solvation dynamics in protein environments studied by photon echo spectroscopy (1999) J. Phys. Chem. B, 103, pp. 7995-8005
  • King, J.T., Kubarych, K.J., Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2d-IR spectroscopy (2012) J. Am. Chem. Soc., 134, pp. 18705-18712
  • Laage, D., Elsaesser, T., Hynes, J.T., Water dynamics in the hydration shells of biomolecules (2017) Chem. Rev., 117, pp. 10694-10725
  • Lampa-Pastirk, S., Beck, W.F., Polar solvation dynamics in Zn(II)-Substituted cytochrome c : diffusive sampling of the energy landscape in the hydrophobic core and solvent-contact layer (2004) J. Phys. Chem. B, 108, pp. 16288-16294
  • Alvarez-Paggi, D., Hannibal, L., Castro, M.A., Oviedo-Rouco, S., Demicheli, V., Tórtora, V., Tomasina, F., Murgida, D.H., Multifunctional cytochrome c: learning new tricks from an old dog (2017) Chem. Rev., 117, pp. 13382-13460
  • Hannibal, L., Tomasina, F., Capdevila, D.A., Demicheli, V., Tórtora, V., Alvarez-Paggi, D., Jemmerson, R., Radi, R., Alternative conformations of cytochrome c: structure, function, and detection (2016) Biochemistry, 55, pp. 407-428
  • Alvarez-Paggi, D., Zitare, U.A., Szuster, J., Morgada, M.N., Leguto, A.J., Vila, A.J., Murgida, D.H., Tuning of enthalpic/entropic parameters of a protein redox center through manipulation of the electronic partition function (2017) J. Am. Chem. Soc., 139, pp. 9803-9806
  • Frauenfelder, H., Sligar, S., Wolynes, P., The energy landscapes and motions of proteins (1991) Science, 254, pp. 1598-1603
  • Frauenfelder, H., Chen, G., Berendzen, J., Fenimore, P.W., Jansson, H., McMahon, B.H., Stroe, I.R., Young, R.D., A unified model of protein dynamics (2009) Proc. Natl. Acad. Sci. Unit. States Am., 106, pp. 5129-5134
  • Fenimore, P.W., Frauenfelder, H., Magazù, S., McMahon, B.H., Mezei, F., Migliardo, F., Young, R.D., Stroe, I., Concepts and problems in protein dynamics (2013) Chem. Phys., 424, pp. 2-6
  • McMahon, B.H., Frauenfelder, H., Fenimore, P.W., The role of continuous and discrete water structures in protein function (2014) Eur. Phys. J. Spec. Top., 223, pp. 915-926
  • Bellissent-Funel, M.C., Hassanali, A., Havenith, M., Henchman, R., Pohl, P., Sterpone, F., van der Spoel, D., Garcia, A.E., Water determines the structure and dynamics of proteins (2016) Chem. Rev., 116, pp. 7673-7697
  • Gao, M., Held, C., Patra, S., Arns, L., Sadowski, G., Winter, R., Crowders and cosolvents-major contributors to the cellular milieu and efficient means to counteract environmental stresses (2017) ChemPhysChem, 18, pp. 2951-2972
  • van den Berg, J., Boersma, A.J., Poolman, B., Microorganisms maintain crowding homeostasis (2017) Nat. Rev. Microbiol., 15, pp. 309-318
  • Rivas, G., Minton, A.P., Macromolecular crowding in vitro, in vivo, and in between (2016) Trends Biochem. Sci., 41, pp. 970-981
  • Kuimova, M.K., Mapping viscosity in cells using molecular rotors (2012) Phys. Chem. Chem. Phys., 14, pp. 12671-12686
  • Feig, M., Yu, I., Wang, P., Nawrocki, G., Sugita, Y., Crowding in cellular environments at an atomistic level from computer simulations (2017) J. Phys. Chem. B, 121, pp. 8009-8025
  • Herrmann, J.M., Riemer, J., The intermembrane space of mitochondria (2010) Antioxidants Redox Signal., 13, pp. 1341-1358
  • Vögtle, F.-N., Burkhart, J.M., Gonczarowska-Jorge, H., Kücükköse, C., Taskin, A.A., Kopczynski, D., Ahrends, R., Meisinger, C., Landscape of submitochondrial protein distribution (2017) Nat. Commun., 8
  • Gu, J., Wu, M., Guo, R., Yan, K., Lei, J., Gao, N., Yang, M., The architecture of the mammalian respirasome (2016) Nature, 537, pp. 639-643
  • Guo, R., Zong, S., Wu, M., Gu, J., Yang, M., Architecture of human mitochondrial respiratory megacomplex I 2 III 2 IV 2 (2017) Cell, 170, pp. 1247-1257. , e12
  • Lu, C., Prada-Gracia, D., Rao, F., Structure and dynamics of water in crowded environments slows down peptide conformational changes (2014) J. Chem. Phys., 141
  • Harada, R., Sugita, Y., Feig, M., Protein crowding affects hydration structure and dynamics (2012) J. Am. Chem. Soc., 134, pp. 4842-4849
  • Malferrari, M., Francia, F., Venturoli, G., Retardation of protein dynamics by trehalose in dehydrated systems of photosynthetic reaction centers. Insights from electron transfer and thermal denaturation kinetics (2015) J. Phys. Chem. B, 119, pp. 13600-13618
  • De, B., Paggi, D.A., Doctorovich, F., Hildebrandt, P., Estrin, D.A., Murgida, D.H., Marti, M.A., Molecular basis for the electric field modulation of cytochrome c structure and function (2009) J. Am. Chem. Soc., 131, pp. 16248-16256
  • Zoi, I., Antoniou, D., Schwartz, S.D., Electric fields and fast protein dynamics in enzymes (2017) J. Phys. Chem. Lett., 8, pp. 6165-6170
  • Fried, S.D., Boxer, S.G., Electric fields and enzyme catalysis (2017) Annu. Rev. Biochem., 86, pp. 387-415
  • Nandi, P.K., Futera, Z., English, N.J., Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: insights from non-equilibrium molecular dynamics (2016) J. Chem. Phys., 145
  • Danielewicz-Ferchmin, I., Ferchmin, A.R., Review: water at ions, biomolecules and charged surfaces (2004) Phys. Chem. Liq., 42, pp. 1-36
  • Druchok, M., Holovko, M., Structural changes in water exposed to electric fields: a molecular dynamics study (2015) J. Mol. Liq., 212, pp. 969-975
  • Richert, R., Relaxation time and excess entropy in viscous liquids: electric field versus temperature as control parameter (2017) J. Chem. Phys., 146
  • Rønne, C., Thrane, L., Åstrand, P.O., Wallqvist, A., Mikkelsen, K.V., Keiding, S.R., Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation (1997) J. Chem. Phys., 107, pp. 5319-5331
  • Saitta, A.M., Saija, F., Giaquinta, P.V., Ab initio molecular dynamics study of dissociation of water under an electric field (2012) Phys. Rev. Lett., 108
  • Sýkora, J., Kapusta, P., Fidler, V., Hof, M., On what time scale does solvent relaxation in phospholipid bilayers happen? (2002) Langmuir, 18, pp. 571-574
  • Vegiri, A., Reorientational relaxation and rotational–translational coupling in water clusters in a d.c. external electric field (2004) J. Mol. Liq., 110, pp. 155-168
  • Zong, D., Hu, H., Duan, Y., Sun, Y., Viscosity of water under electric field: anisotropy induced by redistribution of hydrogen bonds (2016) J. Phys. Chem. B, 120, pp. 4818-4827
  • Ledesma, G.N., Murgida, D.H., Hoang, K.L., Wackerbarth, H., Ulstrup, J., Costa-Filho, A.J., Vila, A.J., The met axial ligand determines the redox potential in CuA sites (2007) J. Am. Chem. Soc., 129, pp. 11884-11885
  • Abriata, L.A., Álvarez-Paggi, D., Ledesma, G.N., Blackburn, N.J., Vila, A.J., Murgida, D.H., Alternative ground states enable pathway switching in biological electron transfer (2012) Proc. Natl. Acad. Sci. U. S. A, 109, pp. 17348-17353
  • Morgada, M.N., Abriata, L.A., Zitare, U., Alvarez-Paggi, D., Murgida, D.H., Vila, A.J., Control of the electronic ground state on an electron-transfer copper site by second-sphere perturbations (2014) Angew. Chem. Int. Ed., 53, pp. 6188-6192
  • Espinoza-Cara, A., Zitare, U.A., Álvarez-Paggi, D., Murgida, D.H., Vila, A.J., Biosynthesis of type 1 copper centers with unusual electronic and functional features by loop engineering (2018) Chem. Sci., 9, pp. 6692-6702
  • Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems (1979) J. Electroanal. Chem. Interfacial Electrochem., 101, pp. 19-28
  • Creager, S.E., Wooster, T.T., A new way of using ac voltammetry to study redox kinetics in electroactive monolayers (1998) Anal. Chem., 70, pp. 4257-4263
  • Zitare, U., Alvarez-Paggi, D., Morgada, M.N., Abriata, L.A., Vila, A.J., Murgida, D.H., Reversible switching of redox-active molecular orbitals and electron transfer pathways in CuA sites of cytochrome c oxidase (2015) Angew. Chem. Int. Ed., 54, pp. 9555-9559
  • Zaballa, M.E., Abriata, L.A., Donaire, A., Vila, A.J., Flexibility of the metal-binding region in apo-cupredoxins (2012) Proc. Natl. Acad. Sci. Unit. States Am., 109, pp. 9254-9259
  • Pérez-Henarejos, S.A., Alcaraz, L.A., Donaire, A., Blue Copper Proteins: a rigid machine for efficient electron transfer, a flexible device for metal uptake (2015) Arch. Biochem. Biophys., 584, pp. 134-148
  • Chaboy, J., Díaz-Moreno, S., Díaz-Moreno, I., De la Rosa, M.A., Díaz-Quintana, A., How the local geometry of the Cu-binding site determines the thermal stability of blue copper proteins (2011) Chem. Biol., 18, pp. 25-31
  • Wittung-Stafshede, P., Malmström, B.G., Sanders, D., Fee, J.A., Winkler, J.R., Gray, H.B., Effect of redox state on the folding free energy of a thermostable electron-transfer metalloprotein: the Cu a domain of cytochrome oxidase from Thermus thermophilus † (1998) Biochemistry, 37, pp. 3172-3177
  • Solomon, E.I., Hadt, R.G., Recent advances in understanding blue copper proteins (2011) Coord. Chem. Rev., 255, pp. 774-789
  • Marmisollé, W.A., Capdevila, D.A., De, L.L., Williams, F.J., Murgida, D.H., Self-assembled monolayers of NH2-terminated thiolates: order, pKa, and specific adsorption (2013) Langmuir, 29, pp. 5351-5359
  • Chidsey, C.E.D., Free energy and temperature dependence of electron transfer at the metal-electrolyte interface (1991) Science, 251, pp. 919-922
  • Monari, S., Battistuzzi, G., Bortolotti, C.A., Yanagisawa, S., Sato, K., Li, C., Salard, I., Sola, M., Understanding the mechanism of short-range electron transfer using an immobilized cupredoxin (2012) J. Am. Chem. Soc., 134, pp. 11848-11851
  • Yokoyama, K., Leigh, B.S., Sheng, Y., Niki, K., Nakamura, N., Ohno, H., Winkler, J.R., Richards, J.H., Electron tunneling through Pseudomonas aeruginosa azurins on SAM gold electrodes (2008) Inorg. Chim. Acta., 361, pp. 1095-1099
  • Chi, Q., Farver, O., Ulstrup, J., Long-range protein electron transfer observed at the single-molecule level: in situ mapping of redox-gated tunneling resonance (2005) Proc. Natl. Acad. Sci. Unit. States Am., 102, pp. 16203-16208
  • Murgida, D.H., Hildebrandt, P., Redox and redox-coupled processes of heme proteins and enzymes at electrochemical interfaces (2005) Phys. Chem. Chem. Phys., 7, pp. 3773-3784
  • Khoshtariya, D.E., Dolidze, T.D., Zusman, L.D., Waldeck, D.H., Observation of the turnover between the solvent friction (overdamped) and tunneling (nonadiabatic) charge-transfer mechanisms for a Au/Fe(CN)63-/4- electrode process and evidence for a freezing out of the Marcus barrier (2001) J. Phys. Chem. A, 105, pp. 1818-1829
  • Liu, T., Liu, X., Spring, D.R., Qian, X., Cui, J., Xu, Z., Quantitatively mapping cellular viscosity with detailed organelle information via a designed PET fluorescent probe (2014) Sci. Rep., 4, p. 5418
  • Yang, Z., He, Y., Lee, J.-H., Park, N., Suh, M., Chae, W.-S., Cao, J., Kim, J.S., A self-calibrating bipartite viscosity sensor for mitochondria (2013) J. Am. Chem. Soc., 135, pp. 9181-9185
  • Jiang, N., Fan, J., Zhang, S., Wu, T., Wang, J., Gao, P., Qu, J., Peng, X., Dual mode monitoring probe for mitochondrial viscosity in single cell (2014) Sensor. Actuator. B Chem., 190, pp. 685-693
  • Murgida, D.H., Hildebrandt, P., Heterogeneous electron transfer of cytochrome c on coated silver electrodes. Electric field effects on structure and redox potential (2001) J. Phys. Chem. B, 105, pp. 1578-1586
  • Matyushov, D.V., Protein electron transfer: dynamics and statistics (2013) J. Chem. Phys., 139
  • Matyushov, D.V., Newton, M.D., Electrode reactions in slowly relaxing media (2017) J. Chem. Phys., 147
  • Seyedi, S.S., Waskasi, M.M., Matyushov, D.V., Theory and electrochemistry of cytochrome c (2017) J. Phys. Chem. B, 121, pp. 4958-4967
  • Zusman, L.D., Outer-sphere electron transfer reactions at an electrode (1987) Chem. Phys., 112, pp. 53-59
  • Khoa, L., Wisitruangsakul, N., Sezer, M., Feng, J.J., Kranich, A., Weidinger, I.M., Zebger, I., Hildebrandt, P., Electric-field effects on the interfacial electron transfer and protein dynamics of cytochrome c (2011) J. Electroanal. Chem., 660, pp. 367-376
  • Clarke, R.J., The dipole potential of phospholipid membranes and methods for its detection (2001) Adv. Colloid Interface Sci., 89-90, pp. 263-281
  • Staffa, J.K., Lorenz, L., Stolarski, M., Murgida, D.H., Zebger, I., Utesch, T., Kozuch, J., Hildebrandt, P., Determination of the local electric field at Au/SAM interfaces using the vibrational Stark effect (2017) J. Phys. Chem. C, 121, pp. 22274-22285

Citas:

---------- APA ----------
Zitare, U.A., Szuster, J., Scocozza, M.F., Espinoza-Cara, A., Leguto, A.J., Morgada, M.N., Vila, A.J.,..., Murgida, D.H. (2019) . The role of molecular crowding in long-range metalloprotein electron transfer: Dissection into site- and scaffold-specific contributions. Electrochimica Acta, 294, 117-125.
http://dx.doi.org/10.1016/j.electacta.2018.10.069
---------- CHICAGO ----------
Zitare, U.A., Szuster, J., Scocozza, M.F., Espinoza-Cara, A., Leguto, A.J., Morgada, M.N., et al. "The role of molecular crowding in long-range metalloprotein electron transfer: Dissection into site- and scaffold-specific contributions" . Electrochimica Acta 294 (2019) : 117-125.
http://dx.doi.org/10.1016/j.electacta.2018.10.069
---------- MLA ----------
Zitare, U.A., Szuster, J., Scocozza, M.F., Espinoza-Cara, A., Leguto, A.J., Morgada, M.N., et al. "The role of molecular crowding in long-range metalloprotein electron transfer: Dissection into site- and scaffold-specific contributions" . Electrochimica Acta, vol. 294, 2019, pp. 117-125.
http://dx.doi.org/10.1016/j.electacta.2018.10.069
---------- VANCOUVER ----------
Zitare, U.A., Szuster, J., Scocozza, M.F., Espinoza-Cara, A., Leguto, A.J., Morgada, M.N., et al. The role of molecular crowding in long-range metalloprotein electron transfer: Dissection into site- and scaffold-specific contributions. Electrochim Acta. 2019;294:117-125.
http://dx.doi.org/10.1016/j.electacta.2018.10.069