Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Previous works proposed that aquaporins behave as mechanosensitive channels. However, principal issues about mechanosensitivity of aquaporins are not known. In this work, we characterized the mechanosensitive properties of the water channels BvTIP1;2 (TIP1) and BvPIP2;1 (PIP2) from red beet (Beta vulgaris). We simultaneously measured the mechanical behavior and the water transport rates during the osmotic response of emptied-out oocytes expressing TIP1 or PIP2. Our results indicate that TIP1 is a mechanosensitive aquaporin, whereas PIP2 is not. We found that a single exponential function between the osmotic permeability coefficient and the volumetric elastic modulus governs the mechanosensitivity of TIP1. Finally, homology modeling analysis indicates that putative residues involved in mechanosensitivity show different quantity and distribution in TIP1 and PIP2. © 2017 Federation of European Biochemical Societies


Documento: Artículo
Título:Tonoplast (BvTIP1;2) and plasma membrane (BvPIP2;1) aquaporins show different mechanosensitive properties
Autor:Goldman, R.P.; Jozefkowicz, C.; Canessa Fortuna, A.; Sutka, M.; Alleva, K.; Ozu, M.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Instituto de Fisiología y Biofísica (IFIBIO Houssay), Laboratorio de Biomembranas, Universidad de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Instituto de Genética Ewald A, Favret (CICVyA-INTA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Palabras clave:aquaporins; mechanosensitivity; membrane tension; volumetric elastic modulus; water flux; water permeability; aquaporin; PIP2 protein; TIP1 protein; unclassified drug; aquaporin; plant protein; adult; animal cell; beet; controlled study; female; heterologous expression; Letter; mechanotransduction; nonhuman; oocyte; osmotic pressure; priority journal; water permeability; water transport; Xenopus laevis; Young modulus; cell membrane; genetics; metabolism; osmosis; physiology; Aquaporins; Beta vulgaris; Cell Membrane; Osmosis; Plant Proteins
Página de inicio:1555
Página de fin:1565
Título revista:FEBS Letters
Título revista abreviado:FEBS Lett.
CAS:aquaporin, 215587-75-0; Aquaporins; Plant Proteins


  • Sukharev, S., Corey, D.P., Mechanosensitive channels: multiplicity of families and gating paradigms (2004) Sci Signal, p. re4
  • Booth, I.R., Blount, P., The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves (2012) J Bacteriol, 194, pp. 4802-4809
  • Booth, I.R., Louis, P., Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli (1999) Curr Opin Microbiol, 2, pp. 166-169
  • Wan, X., Steudle, E., Hartung, W., Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl 2 (2004) J Exp Bot, 55, pp. 411-422
  • Törnroth-Horsefield, S., Hedfalk, K., Fischer, G., Lindkvist-Petersson, K., Neutze, R., Structural insights into eukaryotic aquaporin regulation (2010) FEBS Lett, 584, pp. 2580-2588
  • Conner, A.C., Bill, R.M., Conner, M.T., An emerging consensus on aquaporin translocation as a regulatory mechanism (2013) Mol Membr Biol, 30, pp. 101-112
  • Chevalier, A.S., Chaumont, F., Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals (2015) Plant Cell Physiol, 56, pp. 819-829
  • Sasaki, S., Yui, N., Noda, Y., Actin directly interacts with different membrane channel proteins and influences channel activities: AQP2 as a model (2014) Biochim. Biophys Acta - Biomembr, 1838, pp. 514-520
  • Jozefkowicz, C., Rosi, P., Sigaut, L., Soto, G., Pietrasanta, L.I., Amodeo, G., Alleva, K., Loop a is critical for the functional interaction of two Beta vulgaris PIP aquaporins (2013) PLoS One, 8
  • Jozefkowicz, C., Sigaut, L., Scochera, F., Soto, G., Ayub, N., Pietrasanta, L.I., Amodeo, G., Alleva, K., PIP water transport and its pH dependence are regulated by tetramer stoichiometry (2016) Biophys J, 110, pp. 1312-1321
  • Soveral, G., Madeira, A., Loureiro-Dias, M.C., Moura, T.F., Membrane tension regulates water transport in yeast (2008) Biochim Biophys Acta - Biomembr, 1778, pp. 2573-2579
  • Ye, Q., Wiera, B., Steudle, E., A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration (2004) J Exp Bot, 55, pp. 449-461
  • Ozu, M., Dorr, R.A., Teresa Politi, M., Parisi, M., Toriano, R., Water flux through human aquaporin 1: inhibition by intracellular furosemide and maximal response with high osmotic gradients (2011) Eur Biophys J, 40, pp. 737-746
  • Leitão, L., Prista, C., Loureiro-Dias, M.C., Moura, T.F., Soveral, G., The grapevine tonoplast aquaporin TIP2;1 is a pressure gated water channel (2014) Biochem Biophys Res Commun, 450, pp. 289-294
  • Soveral, G., Macey, R.I., Moura, T.F., Membrane stress causes inhibition of water channels in brush border membrane vesicles from kidney proximal tubule (1997) Biol Cell, 89, pp. 275-282
  • Niemietz, C.M., Tyerman, S.D., Characterization of water channels in wheat root membrane vesicles (1997) Plant Physiol, 115, pp. 561-567
  • Ozu, M., Dorr, R.A., Gutiérrez, F., Politi, M.T., Toriano, R., Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism (2013) Biophys J, 104, pp. 85-95
  • Dumont, J.N., Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals (1972) J Morphol, 136, pp. 153-179
  • Preston, G.M., Carroll, T.P., Guggino, W.B., Agre, P., Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein (1992) Science, 256, pp. 385-387
  • Ozu, M., Dorr, R., Parisi, M., New method to measure water permeability in emptied-out Xenopus oocytes controlling conditions on both sides of the membrane (2005) J Biochem Biophys Methods, 63, pp. 187-200
  • Dorr, R., Ozu, M., Parisi, M., Simple and inexpensive hardware and software method to measure volume changes in Xenopus oocytes expressing aquaporins (2007) J Neurosci Methods, 161, pp. 301-305
  • Cosgrove, D., Steudle, E., Water relations of growing pea epicotyl segments (1981) Planta, 153, pp. 343-350
  • Iscla, I., Blount, P., Sensing and responding to membrane tension: the bacterial MscL channel as a model system (2012) Biophys J, 103, pp. 169-174
  • Arnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling (2006) Bioinformatics, 22, pp. 195-201
  • Törnroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tajkhorshid, E., Neutze, R., Kjellbom, P., Structural mechanism of plant aquaporin gating (2006) Nature, 439, pp. 688-694
  • Kirscht, A., Kaptan, S.S., Bienert, G.P., Chaumont, F., Nissen, P., de Groot, B.L., Kjellbom, P., Johanson, U., Crystal structure of an ammonia-permeable aquaporin (2016) PLoS Biol, 14
  • Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) J Mol Graph, 14, pp. 33-38
  • Kelly, S.M., Jia, Y.L., Macklem, P.T., Measurement of elastic properties of Xenopus oocytes (1997) Comp Biochem Physiol, 118, pp. 607-613
  • Maurel, C., Boursiac, Y., Luu, D.-T., Santoni, V., Shahzad, Z., Verdoucq, L., Aquaporins in plants (2015) Physiol Rev, 95, pp. 1321-1358
  • Maurel, C., Plant aquaporins: novel functions and regulation properties (2007) FEBS Lett, 581, pp. 2227-2236
  • Soto, G., Alleva, K., Amodeo, G., Muschietti, J., Ayub, N.D., New insight into the evolution of aquaporins from flowering plants and vertebrates: orthologous identification and functional transfer is possible (2012) Gene, 503, pp. 165-176
  • Neuhaus, H.E., Trentmann, O., Regulation of transport processes across the tonoplast (2014) Front Plant Sci, 5, p. 460
  • Zhang, C., Hicks, G.R., Raikhel, N.V., Plant vacuole morphology and vacuolar trafficking (2014) Front Plant Sci, 5, p. 476
  • Ivakov, A., Persson, S., Plant cell shape: modulators and measurements (2013) Front Plant Sci, 4, pp. 1-13
  • Martinac, B., The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity (2014) Biochim Biophys Acta - Biomembr, 1838, pp. 682-691
  • Sukharev, S., Sachs, F., Molecular force transduction by ion channels – diversity and unifying principles (2012) J Cell Sci, 125, pp. 3075-3083
  • Sachs, F., Stretch-activated ion channels: What are they? (2010) Physiology, 25, pp. 50-56
  • Peyronnet, R., Tran, D., Girault, T., Frachisse, J.-M., Mechanosensitive channels: feeling tension in a world under pressure (2014) Front. Plant Sci, 5, p. 558
  • Alexandre, J., Lassalles, J.-P., Hydrostatic and osmotic pressure activated channel in plant vacuole (1991) Biophys J, 60, pp. 1326-1336
  • Anishkin, A., Loukin, S.H., Teng, J., Kung, C., Feeling the hidden mechanical forces in lipid bilayer is an original sense (2014) Proc Natl Acad Sci USA, 111, pp. 7898-7905
  • Teng, J., Loukin, S., Anishkin, A., Kung, C., The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements (2014) Pflügers Arch - Eur J Physiol, 467, pp. 27-37
  • Tong, J., Briggs, M.M., McIntosh, T.J., Water permeability of Aquaporin-4 channel depends on bilayer composition, thickness, and elasticity (2012) Biophys J, 103, pp. 1899-1908
  • Stansfeld, P.J., Jefferys, E.E., Sansom, M.S.P., Multiscale simulations reveal conserved patterns of lipid interactions with aquaporins (2013) Structure, 21, pp. 810-819
  • Russ, W.P., Engelman, D.M., The GxxxG motif: a framework for transmembrane helix-helix association (2000) J Mol Biol, 296, pp. 911-919
  • Balleza, D., Toward understanding protocell mechanosensation (2011) Origins of Life and Evolution of Biospheres, 41, pp. 281-304
  • Perozo, E., Rees, D.C., Structure and mechanism in prokaryotic mechanosensitive channels (2003) Curr Opin Struct Biol, 13, pp. 432-442
  • Fujiyoshi, Y., Mitsuoka, K., de Groot, B.L., Philippsen, A., Grubmüller, H., Agre, P., Engel, A., Structure and function of water channels (2002) Curr Opin Struct Biol, 12, pp. 509-515
  • Perez Di Giorgio, J., Soto, G., Alleva, K., Jozefkowicz, C., Amodeo, G., Muschietti, J.P., Ayub, N.D., Prediction of aquaporin function by integrating evolutionary and functional analyses (2014) J Membr Biol, 247, pp. 107-125


---------- APA ----------
Goldman, R.P., Jozefkowicz, C., Canessa Fortuna, A., Sutka, M., Alleva, K. & Ozu, M. (2017) . Tonoplast (BvTIP1;2) and plasma membrane (BvPIP2;1) aquaporins show different mechanosensitive properties. FEBS Letters, 591(11), 1555-1565.
---------- CHICAGO ----------
Goldman, R.P., Jozefkowicz, C., Canessa Fortuna, A., Sutka, M., Alleva, K., Ozu, M. "Tonoplast (BvTIP1;2) and plasma membrane (BvPIP2;1) aquaporins show different mechanosensitive properties" . FEBS Letters 591, no. 11 (2017) : 1555-1565.
---------- MLA ----------
Goldman, R.P., Jozefkowicz, C., Canessa Fortuna, A., Sutka, M., Alleva, K., Ozu, M. "Tonoplast (BvTIP1;2) and plasma membrane (BvPIP2;1) aquaporins show different mechanosensitive properties" . FEBS Letters, vol. 591, no. 11, 2017, pp. 1555-1565.
---------- VANCOUVER ----------
Goldman, R.P., Jozefkowicz, C., Canessa Fortuna, A., Sutka, M., Alleva, K., Ozu, M. Tonoplast (BvTIP1;2) and plasma membrane (BvPIP2;1) aquaporins show different mechanosensitive properties. FEBS Lett. 2017;591(11):1555-1565.