Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This article is concerned with the analysis of relativistic corrections to the electric field gradients (EFGs) via the linear response elimination of the small component scheme (LRESC). Originally developed for magnetic shielding constant, LRESC has been applied in many molecular properties and presented in this work describing EFG for the first time. Within LRESC we obtain relativistic corrections to EFG in terms of 1/c (the speed of light) formally showing that, up to first order (1/c 2 ), there are no virtual pair contributions; recovering the so-called “no-pair” approximation. Virtual pair contributions and triplet corrections arise at second order (1/c 4 ). To assess the LRESC description of EFGs at Hartree-Fock and DFT levels, we applied it to a simple heavy atom containing set of benchmark molecular systems, HX (X = F, Cl, Br, I, and At), and to linear HgX 2 (X = Cl, Br, and I) molecules. Fully relativistic four-component calculations were also done and taken as reference. The most important relativistic correction given by LRESC is a Mass-velocity related contribution (Δ Mv ) which represents close to 80% of the nonrelativistic result for At in HAt molecule. For Hg in HgX 2 molecular systems, Δ Mv is also the most important correction representing close to 60% of the nonrelativistic part. We also describe the overall behavior of LRESC corrections in HgX 2 molecules showing low varying results when the weight of the halogen, X, increases. In this kind of molecular system, correlation effects appear in combination to relativity, making them a challenging group to be studied. LRESC results are in very good agreement with previous results for halogen halides, but it shows a need of inclusion of higher order contributions, beyond 1/c 2 , when applied to Hg in HgX 2 set, although LRESC describes accurately At atom, heavier than Hg. © 2019 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Relativistic corrections to the electric field gradient given by linear response elimination of the small component formalism
Autor:Melo, J.I.; Maldonado, A.F.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univ. de Buenos Aires and IFIBA CONICET, Buenos Aires, Argentina
Instituto de Modelado e Innovación Tecnológica, CONICET-UNNE, Corrientes, Argentina
Palabras clave:DFT; EFG; LRESC; no-pair approximation; relativistic effects; virtual pairs; Electric fields; Molecules; Relativity; Electric field gradients; LRESC; Magnetic shielding constant; Pair approximation; Relativistic correction; Relativistic effects; Relativistic four-component calculations; virtual pairs; Mercury (metal)
Año:2019
DOI: http://dx.doi.org/10.1002/qua.25935
Título revista:International Journal of Quantum Chemistry
Título revista abreviado:Int J Quantum Chem
ISSN:00207608
CODEN:IJQCB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00207608_v_n_p_Melo

Referencias:

  • Pound, R.V., (1950) Phys. Rev., 79, p. 685
  • Dehmelt, H.G., Kruger, H., (1950) Naturwiss, 37, p. 111
  • Mössbauer, R.L., (1958) Z. Phys., 151 (2), p. 124
  • Haas, H., Shirley, D.A., (1973) J. Chem. Phys., 58, p. 3339
  • Van Stralen, J.N.P., Visscher, L., (2002) J. Chem. Phys., 117, p. 3103
  • Haiduke, R.L.A., da Silva, A.B.F., Visscher, L., (2006) J. Chem. Phys., 125, p. 064301
  • da Silva, A.B.F., Haiduke, R.L.A., Visscher, L., (2007) Chem. Phys. Lett., 445, p. 95
  • Wolf, A., Reiher, M., (2006) J. Chem. Phys., 124, p. 064102
  • Cheng, L., Gauss, J., (2011) J. Chem. Phys., 134, p. 244112
  • Visscher, L., Enevoldsen, T., Saue, T., Oddershede, J., (1998) J. Chem. Phys., 109, p. 9677
  • Malkin, I., Malkina, O.L., Malkin, V.G., (2002) Chem. Phys. Lett., 361, p. 231
  • Van Stralen, J.N.P., Visscher, L., (2003) Mol. Phys., 101, p. 2115
  • Jacob, C.R., Visscher, L., Thierfelder, C., Schwerdtfeger, P., (2007) J. Chem. Phys., 127, p. 204303
  • Mastalerz, R., Barone, G., Lindh, R., Reiher, M., (2007) J. Chem. Phys., 127, p. 074105
  • Cheng, L., Gauss, J., (2011) J. Chem. Phys., 135, p. 084114
  • Arcisauskaite, V., Knecht, S., Sauer, S.P.A., Hemmingsen, L., (2012) Phys. Chem. Chem. Phys., 14, p. 2651
  • Arcisauskaite, V., Knecht, S., Sauer, S.P.A., Hemmingsen, L., (2012) Phys. Chem. Chem. Phys., 14, p. 16070
  • Filatov, M., Zou, W., Cremer, D., (2012) J. Chem. Phys., 137, p. 054113
  • Filatov, M., Zou, W., Cremer, D., (2013) Curr. Inorg. Chem., 3, p. 284
  • Melo, J.I., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Romero, R.H., (2003) J. Chem. Phys., 118, p. 471
  • Ruiz de Azúa, M.C., Melo, J.I., Giribet, C.G., (2003) Mol. Phys., 101, p. 3103
  • Aucar, I.A., Gomez, S.S., Ruiz de Aza, M.C., Giribet, C.G., (2012) J. Chem. Phys., 136, p. 204119
  • Aucar, I.A., Gomez, S.S., Giribet, C.G., Aucar, G.A., (2016) Phys. Chem. Chem. Phys., 18, p. 23572
  • Aucar, I.A., Gomez, S.S., Giribet, C.G., Ruiz de Aza, M.C., (2014) J. Chem. Phys., 141, p. 194103
  • Aucar, G.A., Melo, J.I., Aucar, I.A., Maldonado, A.F., (2018) Int. J. Quantum Chem., 118 (1)
  • Jackson, J.D., (1999) Classical Electrodynamics, , 3rd, ed.,, Wiley, New York
  • Pernpointner, M., Accurate determination of electric field gradients for heavy atoms and molecules (2004) Relativistic Electronic Structure Theory, volume 14 of Theoretical and Computational Chemistry, p. 289. , (Ed, P. Schwerdtfeger, Elsevier, Ámsterdam, p., Ch. 5
  • Melo, J.I., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Provasi, P.F., (2004) J. Chem. Phys., 121, p. 6798
  • Chen-Tannoudji, C., Dupont-Roc, J., Grynberg, G., (1997) Photons and Atoms, , Wiley, New York
  • Reiher, M., Wolf, A., (2009) Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science, , Wiley-VCH, Weinheim
  • Kagakkai, N.B., (1984) Kagaku Benran, II, p. 649. , 3rd, ed., Maruzen Company, LTD, Tokyo, p
  • Saue, T., Visscher, L., Jensen, H.J.A., Bast, R., Bakken, V., Dyall, K.G., Dubillard, S., Yamamoto, S., (2016), http://www.diracprogram.org, DIRAC, a relativistic ab initio electronic structure program, Release DIRAC16,,) (accessed March 2019); (2015), http://daltonprogram.org, Dalton, a molecular electronic structure program, Release Dalton2016.X,,) (accessed March 2019); Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Ågren, H., (2014) WIREs Comput. Mol. Sci., 4, p. 269
  • Dyall, K.G., (2002) Theor. Chem. Acc., 108, p. 335
  • Dyall, K.G., (2006) Theor. Chem. Acc., 115, p. 441
  • Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648
  • Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., (1994) J. Phys. Chem., 98, p. 11623
  • Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098
  • Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785
  • Ernzerhof, M., Scuseria, G.E., (1999) J. Chem. Phys., 110, p. 5029
  • Adamo, C., Barone, V., (1999) J. Chem. Phys., 110, p. 6158
  • Perdew, J.P., (1986) Phys. Rev. B, 33, p. 8822
  • Reiher, M., Wolf, A., (2004) J. Chem. Phys., 121, p. 2037
  • Reiher, M., Wolf, A., (2004) J. Chem. Phys., 121, p. 10945
  • Maldonado, A.F., Aucar, G.A., (2009) Phys. Chem. Chem. Phys., 11, p. 5615
  • Melo, J.I., Maldonado, A., Aucar, G.A., (2011) Theor. Chem. Acc., 129, p. 483
  • Maldonado, A.F., Aucar, G.A., (2014) J. Phys. Chem. A, 118, p. 7863

Citas:

---------- APA ----------
Melo, J.I. & Maldonado, A.F. (2019) . Relativistic corrections to the electric field gradient given by linear response elimination of the small component formalism. International Journal of Quantum Chemistry.
http://dx.doi.org/10.1002/qua.25935
---------- CHICAGO ----------
Melo, J.I., Maldonado, A.F. "Relativistic corrections to the electric field gradient given by linear response elimination of the small component formalism" . International Journal of Quantum Chemistry (2019).
http://dx.doi.org/10.1002/qua.25935
---------- MLA ----------
Melo, J.I., Maldonado, A.F. "Relativistic corrections to the electric field gradient given by linear response elimination of the small component formalism" . International Journal of Quantum Chemistry, 2019.
http://dx.doi.org/10.1002/qua.25935
---------- VANCOUVER ----------
Melo, J.I., Maldonado, A.F. Relativistic corrections to the electric field gradient given by linear response elimination of the small component formalism. Int J Quantum Chem. 2019.
http://dx.doi.org/10.1002/qua.25935