Artículo

Amaral, M.D.; da Silva, J.V.; Ricarte, G.C.; Teymurazyan, R. "Sharp regularity estimates for quasilinear evolution equations" (2019) Israel Journal of Mathematics
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We establish sharp geometric C 1+α regularity estimates for bounded weak solutions of evolution equations of p-Laplacian type. Our approach is based on geometric tangential methods, and makes use of a systematic oscillation mechanism combined with an adjusted intrinsic scaling argument. © 2019, The Hebrew University of Jerusalem.

Registro:

Documento: Artículo
Título:Sharp regularity estimates for quasilinear evolution equations
Autor:Amaral, M.D.; da Silva, J.V.; Ricarte, G.C.; Teymurazyan, R.
Filiación:Department of Mathematics, Universidade da Integração Internacional da Lusofonia Afro-Brasileira - UNILAB, Acarape, Ceará 62785-000, Brazil
FCEyN, Department of Mathematics, University of Buenos Aires, Ciudad Universitaria-Pabellón I, Buenos Aires, C1428EGA, Argentina
Department of Mathematics, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
CMUC, Department of Mathematics, University of Coimbra, Coimbra, 3001-501, Portugal
Año:2019
DOI: http://dx.doi.org/10.1007/s11856-019-1842-1
Título revista:Israel Journal of Mathematics
Título revista abreviado:Isr. J. Math.
ISSN:00212172
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_00212172_v_n_p_Amaral

Referencias:

  • Acerbi, E., Mingione, G., Gradient estimates for a class of parabolic systems (2007) Duke Mathematical Journal, 136, pp. 285-320
  • Acerbi, E., Mingione, G., Seregin, G.A., Regularity results for parabolic systems related to a class of non-Newtonian fluids (2004) Annales de l’Institut Henri Poincaré. Analyse Non Linéaire, 21, pp. 25-60
  • Amaral, M.D., Teixeira, E.V., Free transmission problems (2015) Communications in Mathematical Physics, 337, pp. 1465-1489
  • Araújo, D.J., Ricarte, G.C., Teixeira, E.V., Geometric gradient estimates for solutions to degenerate elliptic equations (2015) Calculus of Variations and Partial Differential Equations, 53, pp. 605-625
  • Araújo, D.J., Teixeira, E.V., Urbano, J.M., A proof of the Cpℓ -regularity conjecture in the plane (2017) Advances in Mathematics, 316, pp. 541-553
  • Araújo, D.J., Teixeira, E.V., Urbano, J.M., Towards the Cp ' -regularity conjecture in higher dimensions (2018) International Mathematics Research Notices, pp. 6481-6495
  • Araújo, D.J., Zhang, L., Optimal c1,a estimates for a class of elliptic quasilinear equations Communications in Contemporary Mathematics, , to appear
  • Attouchi, A., Parviainen, M., Ruosteenoja, E., C1,a regularity for the normalized p- Poisson problem (2017) Journal de Mathématiques Pures et Appliquées, 108, pp. 553-591
  • Bae, H.-O., Choe, H.J., Regularity for certain nonlinear parabolic systems (2004) Communications in Partial Differential Equations, 29, pp. 611-645
  • Bögelein, V., Duzaar, F., Mingione, G., (2013) The Regularity of General Parabolic Systems with Degenerate Diffusion, Memoirs of the American Mathematical Society, 221
  • Caffarelli, L.A., Interior a priori estimates for solutions of fully nonlinear equations (1989) Annals of Mathematics, 130, pp. 189-213
  • Challal, S., Lyaghfouri, A., Rodrigues, J.F., Teymurazyan, R., On the regularity of the free boundary for quasilinear obstacle problems (2014) Interfaces and Free Boundaries, 16, pp. 359-394
  • Choe, H.J., Hölder regularity for the gradient of solutions of certain singular parabolic systems (1991) Communications in Partial Differential Equations, 16, pp. 1709-1732
  • da Silva, J.V., dos Prazeres, D., Schauder type estimates for “flat” viscosity solutions to non-convex fully nonlinear parabolic equations and applications (2019) Potential Analysis, 50, pp. 149-170
  • Silva, J.V.D., Leitão, R.A., Ricarte, G.C., Geometric Regularity Estimates for Fully Nonlinear Elliptic Equations with Free Boundaries, , https://www.researchgate.net/publication/316283716_Geometric_regularity_estimates_for_fully_nonlinear_elliptic_equations_with_free_boundaries, submitted
  • da Silva, J.V., Ochoa, P., Silva, A., Regularity for degenerate evolution equations with strong absorption (2018) Journal of Differential Equations, 264, pp. 7270-7293
  • da Silva, J.V., Rossi, J.D., Salort, A.M., Regularity properties for p-dead core problems and their asymptotic limit as p → 8 (2019) Journal of the London Mathematical Society, 99, pp. 69-96
  • da Silva, J.V., Salort, A.M., (2018) Sharp regularity estimates for quasi-linear elliptic dead core problems and applications, Calculus of Variations and Partial Differential Equations 57, p. 24
  • da Silva, J.V., Teixeira, E.V., Sharp regularity estimates for second order fully nonlinear parabolic equations (2017) Mathematische Annalen, 369, pp. 1623-1648
  • DiBenedetto, E., Degenerate Parabolic Equations (1993) Universitext, , Springer-Verlag, New York
  • DiBenedetto, E., Friedman, A., Regularity of solutions of nonlinear degenerate parabolic systems (1984) Journal für die Reine und Angewandte Mathematik, 349, pp. 83-128
  • DiBenedetto, E., Friedman, A., Addendum to: “Hölder estimates for nonlinear degenerate parabolic systems (1985) Journal für die Reine und Angewandte Mathematik, 363, pp. 217-220
  • DiBenedetto, E., Friedman, A., Hölder estimates for nonlinear degenerate parabolic systems (1985) Journal für die Reine und Angewandte Mathematik, 357, pp. 1-22
  • DiBenedetto, E., Gianazza, U., Vespri, V., Harnack’s Inequality for Degenerate and Singular Parabolic Equations (2012) Springer Monographs in Mathematics, , Springer, New York
  • DiBenedetto, E., Urbano, J.M., Vespri, V., Current issues on singular and degenerate evolution equations (2004) Evolutionary Equations. Vol. I, pp. 169-286. , Handbook of Differential Equations, North-Holland, Amsterdam
  • Iwaniec, T., Manfredi, J.J., Regularity of p-harmonic functions on the plane (1989) Revista Matemática Iberoamericana, 5, pp. 1-19
  • Kinnunen, J., Lewis, J.L., Higher integrability for parabolic systems of p-Laplacian type (2000) Duke Mathematical Journal, 102, pp. 253-271
  • Krylov, N.V., (2008) Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, 96. , American Mathematical Society, Providence, RI
  • Kuusi, T., Mingione, G., Gradient regularity for nonlinear parabolic equations (2013) Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, 12, pp. 755-822
  • Kuusi, T., Mingione, G., The Wolff gradient bound for degenerate parabolic equations (2014) Journal of the European Mathematical Society, 16, pp. 835-892
  • Ladyženskaja, O.A., Solonnikov, V.A., Ural’Ceva, N.N., (1968) Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23. , American Mathematical Society, Providence, RI
  • Lieberman, G.M., (1996) Second Order Parabolic Differential Equations, , World Scientific Publishing, River Edge, NJ
  • Lindgren, E., Lindqvist, P., Regularity of the p-Poisson equation in the plane (2017) Journal d’Analyse Mathématique, 132, pp. 217-228
  • Lindqvist, P., On the time derivative in a quasilinear equation (2008) Skrifter. Det Kongelige Norske Videnskabers Selskab, 2, pp. 1-7
  • Simon, J., Compact sets in the space Lp(0, T;B) (1987) Annali di Matematica Pura ed Applicata, 146, pp. 65-96
  • Teixeira, E.V., Sharp regularity for general Poisson equations with borderline sources (2013) Journal de Mathématiques Pures et Appliquées, 99, pp. 150-164
  • Teixeira, E.V., Regularity for quasilinear equations on degenerate singular sets (2014) Mathematiche Annalen, 358, pp. 241-256
  • Teixeira, E.V., Hessian continuity at degenerate points in nonvariational elliptic problems (2015) International Mathematics Research Notices, pp. 6893-6906
  • Teixeira, E.V., Urbano, J.M., A geometric tangential approach to sharp regularity for degenerate evolution equations (2014) Analysis & PDE, 7, pp. 733-744
  • Teixeira, E.V., Urbano, J.M., An intrinsic Liouville theorem for degenerate parabolic equations (2014) Archiv Mathematik, 102, pp. 483-487
  • Urbano, J.M., (2008) The Method of Intrinsic Scaling, Lecture Notes in Mathematics, 1930. , Springer-Verlag, Berlin
  • Wiegner, M., On C α -regularity of the gradient of solutions of degenerate parabolic systems (1986) Annali di Matematica Pura ed Applicata, 145, pp. 385-405

Citas:

---------- APA ----------
Amaral, M.D., da Silva, J.V., Ricarte, G.C. & Teymurazyan, R. (2019) . Sharp regularity estimates for quasilinear evolution equations. Israel Journal of Mathematics.
http://dx.doi.org/10.1007/s11856-019-1842-1
---------- CHICAGO ----------
Amaral, M.D., da Silva, J.V., Ricarte, G.C., Teymurazyan, R. "Sharp regularity estimates for quasilinear evolution equations" . Israel Journal of Mathematics (2019).
http://dx.doi.org/10.1007/s11856-019-1842-1
---------- MLA ----------
Amaral, M.D., da Silva, J.V., Ricarte, G.C., Teymurazyan, R. "Sharp regularity estimates for quasilinear evolution equations" . Israel Journal of Mathematics, 2019.
http://dx.doi.org/10.1007/s11856-019-1842-1
---------- VANCOUVER ----------
Amaral, M.D., da Silva, J.V., Ricarte, G.C., Teymurazyan, R. Sharp regularity estimates for quasilinear evolution equations. Isr. J. Math. 2019.
http://dx.doi.org/10.1007/s11856-019-1842-1