Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The use of heat as a cue for the orientation of haematophagous insects towards hot-blooded hosts has been acknowledged for many decades. In mosquitoes, thermoreception has been studied at the molecular, physiological and behavioural levels, and the response to heat has been evaluated in multimodal contexts. However, a direct characterization of how these insects evaluate thermal sources is still lacking. In this study we characterize Aedes aegypti thermal orientation using a simple dual choice paradigm, providing direct evidence on how different attributes of heat sources affect their choice. We found that female mosquitoes, but not males, are able to discriminate among heat sources that are at ambient, host-range and deleterious temperatures when no other stimuli are present, eliciting a positive response towards host-range and an avoidance response towards deleterious temperatures. We also tested the preference of females according to the size and position of the sources. We found that females do not discriminate between heat sources of different sizes, but actively orientate towards closer sources at host temperature. Furthermore, we show that females cannot use IR radiation as an orientation cue. Orientation towards a host involves the integration of cues of different nature in distinct phases of the orientation. Although such integration might be decisive for successful encounter of the host, we show that heat alone is sufficient to elicit orientation behaviour. We discuss the performance of mosquitoes’ thermal behaviour compared to other blood-sucking insects. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:What does heat tell a mosquito? Characterization of the orientation behaviour of Aedes aegypti towards heat sources
Autor:Zermoglio, P.F.; Robuchon, E.; Leonardi, M.S.; Chandre, F.; Lazzari, C.R.
Filiación:Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université François Rabelais, Tours, France
Instituto de Biología de Organismos Marinos, Centro Nacional Patagónico (CENPAT-CONICET), Puerto Madryn, Argentina
MIVEGEC, IRD 224-CNRS 5290-UM1-UM2, Laboratoire de lutte contre les Insectes Nuisibles (LIN), Montpellier, France
Palabras clave:Haematophagous; Host-seeking; Infrared perception; Thermal orientation; behavioral response; female; heat source; male; mosquito; orientation; orientation behavior; physiological response; temperature effect; Aedes aegypti; Hexapoda; Aedes; animal; association; female; heat; physiology; spatial orientation; taxis response; Aedes; Animals; Cues; Female; Hot Temperature; Orientation, Spatial; Taxis Response
Año:2017
Volumen:100
Página de inicio:9
Página de fin:14
DOI: http://dx.doi.org/10.1016/j.jinsphys.2017.04.010
Título revista:Journal of Insect Physiology
Título revista abreviado:J. Insect Physiol.
ISSN:00221910
CODEN:JIPHA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221910_v100_n_p9_Zermoglio

Referencias:

  • Bohbot, J.D., Sparks, J.T., Dickens, J.C., The maxillary palp of Aedes aegypti, a model of multisensory integration (2014) Insect Biochem. Mol. Biol., 48, pp. 29-39
  • Boo, K.S., Antennal sensory receptors of the male mosquito Anopheles stephensi (1980) Z. Parasitenkd., 61, pp. 249-264
  • Brady, O.J., Johansson, M.A., Guerra, C.A., Bhatt, S., Golding, N., Pigott, D.M., Delatte, H., Hay, S.I., Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings (2013) Parasit. Vectors, 6, p. 351
  • Bullock, T.H., Cowles, R.B., Physiology of an infrared receptor-the facial pit of pit vipers (1952) Science, 115, pp. 541-543
  • Cardé, R.T., Multi-cue integration: how female mosquitoes locate a human host (2015) Curr. Biol., 25 (18), pp. R793-R795
  • Corfas, R.A., Vosshall, L.B., The cation channel TRPA1 tunes mosquito thermotaxis to host temperatures (2015) eLife, 4
  • Davis, E.E., Sokolove, P.G., Temperature responses of antennal receptors of the mosquito, Aedes aegypti (1975) J. Comp. Physiol., 96, pp. 223-236
  • Dekker, T., Takken, W., Knols, B.G.J., Bouman, E., van de Laak, S., de Bever, A., Huisman, P.W.T., Selection of biting sites on a human host by Anopheles gambiae s.s., An. arabiensis and An. quadriannulatus (1998) Entomol. Exp. Appl., 87, pp. 295-300
  • Evans, W.G., Infra-red receptors in Melanophila acuminata De Geer (1964) Nature, 202, p. 211
  • Ferreira, R.A., Lazzari, C.R., Lorenzo, M.G., Pereira, M.H., Do haematophagous bugs assess skin surface temperature to detect blood vessels? (2007) PLoS One, 2, p. e932
  • Fresquet, N., Lazzari, C.R., Response to heat in Rhodnius prolixus: the role of thermal background (2011) J. Insect Physiol., 57, pp. 1446-1449
  • Gingl, E., Hinterwirth, A., Tichy, H., Sensory representation of temperature in mosquito warm and cold cells (2005) J. Neurophysiol., 94, pp. 176-185
  • Healy, T.P., Copland, M.J., Cork, A., Przyborowska, A., Halket, J.M., Landing responses of Anopheles gambiae elicited by oxocarboxylic acids (2002) Med. Vet. Entomol., 16, pp. 126-132
  • Howlett, F.M., The influence of temperature upon the biting of mosquitoes (1910) Parasitology, 3, pp. 479-484
  • Insausti, T.C., Lazzari, C.R., Campanucci, V.A., Neurobiology of Behaviour. A: Morphology of the Nervous System and Sense Organs (1999) Atlas of Chagas' Disease Vectors in America, 3, pp. 1017-1051. , Carcavallo et al. (eds.) Editora Fiocruz Rio de Janeiro
  • Jones, M.D.R., The programming of circadian flight-activity in relation to mating and the gonotrophic cycle in the mosquito, Aedes aegypti (1981) Physiol. Entomol., 6, pp. 307-313
  • Khan, A.A., Maibach, H.I., Strauss, W.G., The role of convection currents in mosquito attraction to human skin (1968) Mosquito News, 28, pp. 462-464
  • Kirby, M.J., Lindsay, S.W., Responses of adult mosquitoes of two sibling species, Anopheles arabiensis and A. gambiae s.s. (Diptera: Culicidae), to high temperatures (2004) Bull. Entomol. Res., 94, pp. 441-448
  • Lazzari, C.R., Orientation towards hosts in haematophagous insects: an integrative perspective (2009) Adv. Insect Physiol., 37, pp. 1-58
  • Lazzari, C.R., Núñez, J.A., The response to radiant heat and the estimation of the temperature of distant sources in Triatoma infestans (1989) J. Insect Physiol., 35, pp. 525-529
  • Lazzari, C.R., Wicklein, M., The cave-like sense organ in the antennae of triatominae bugs (1994) Mem. Inst. Oswaldo Cruz, 89, pp. 643-648
  • Lorenzo Figueiras, A.N., Flores, G.B., Lazzari, C.R., The role of antennae in the thermopreference of haematophagous bugs (2013) J. Insect Physiol., 59, pp. 1194-1198
  • McIver, S., Siemicki, R., Fine structure of antennal sensilla of male Aedes aegypti (L.) (1979) J. Insect Physiol., 25, pp. 21-28
  • McMeniman, C.J., Corfas, R.A., Matthews, B.J., Ritchie, S.A., Vosshall, L.B., Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans (2014) Cell, 156, pp. 1060-1071
  • Olanga, E.A., Okal, M.N., Mbadi, P.A., Kokwaro, E.D., Mukabana, W.R., Attraction of Anopheles gambiae to odour baits augmented with heat and moisture (2010) Malaria J., 9, p. 6
  • Peterson, D.G., Brown, A.W.A., Studies of the responses of the female Aedes mosquito III- the response of Aedes aegypti (L.) to a warm body and its radiation (1951) Bull. Entomol. Res., 42, pp. 535-541
  • R Core Team, R: A Language and Environment for Statistical Computing (2015), http://www.R-project.org/, R Foundation for Statistical Computing Vienna, Austria Available from:; Schilman, P.E., Lazzari, C.R., Temperature preference in Rhodnius prolixus: effects and possible consequences (2004) Acta Trop., 90, pp. 115-122
  • Schmitz, H., Bleckmann, H., Fine structure and physiology of the infrared receptor of beetles of the genus Melanophila (Coleoptera: Buprestidae) (1997) Int. J. Insect Morphol. Embryol., 26, pp. 205-215
  • Schmitz, H., Trenner, S., Hofmann, M.H., Bleckmann, H., The ability of Rhodnius prolixus (Hemiptera, Reduviidae) to approach a thermal source solely by its infrared radiation (2000) J. Insect Physiol., 46, pp. 745-751
  • Spitzen, J., Spoor, C.W., Grieco, F., ter Braak, C., Beeuwkes, J., van Brugge, S.P., Kranenbarg, S., Takken, W., A 3D analysis of flight behavior of Anopheles gambiae sensu stricto malaria mosquitoes in response to human odor and heat (2013) PLoS One, 8
  • Thomson, R.C.M., The reactions of mosquitoes to temperature and humidity (1938) Bull. Entomol. Res., 29, pp. 25-140
  • van Breugel, F., Riffell, J., Fairhall, A., Dickinson, M.H., Mosquitoes use vision to associate odor plumes with thermal targets (2015) Curr. Biol., 25, pp. 1-7
  • Vinauger, C., Lallement, H., Lazzari, C.R., Learning and memory in Rhodnius prolixus: habituation and aversive operant conditioning of the proboscis extension response (2013) J. Exp. Biol., 216, pp. 892-900
  • Wang, G., Qiu, Y.T., Lu, T., Kwon, H.W., Jason Pitts, R., Van Loon, J.J.A., Takken, W., Zwiebel, L.J., Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae (2009) Eur. J. Neurosci., 30, pp. 967-974
  • Wigglesworth, V.B., Gillet, J.D., The functions of the antennae in Rhodnius prolixus (Hemiptera) and the mechanism of orientation to the host (1934) J. Exp. Biol., 11 (120-139), p. 408
  • Zwiebel, L.J., Takken, W., Olfactory regulation of mosquito–host interactions (2004) Insect Biochem. Mol. Biol., 34, pp. 645-652
  • Zopf, L.M., Lazzari, C.R., Tichy, H., Differential effects of ambient temperature on warm cell responses to infrared radiation in the bloodsucking bug Rhodnius prolixus (2014) J. Neurophysiol., 111, pp. 1341-1349
  • Zopf, L.M., Lazzari, C.R., Tichy, H., Infrared detection without specialized infrared receptors in the bloodsucking bug Rhodnius prolixus (2014) J. Neurophysiol., 112, pp. 1606-1615

Citas:

---------- APA ----------
Zermoglio, P.F., Robuchon, E., Leonardi, M.S., Chandre, F. & Lazzari, C.R. (2017) . What does heat tell a mosquito? Characterization of the orientation behaviour of Aedes aegypti towards heat sources. Journal of Insect Physiology, 100, 9-14.
http://dx.doi.org/10.1016/j.jinsphys.2017.04.010
---------- CHICAGO ----------
Zermoglio, P.F., Robuchon, E., Leonardi, M.S., Chandre, F., Lazzari, C.R. "What does heat tell a mosquito? Characterization of the orientation behaviour of Aedes aegypti towards heat sources" . Journal of Insect Physiology 100 (2017) : 9-14.
http://dx.doi.org/10.1016/j.jinsphys.2017.04.010
---------- MLA ----------
Zermoglio, P.F., Robuchon, E., Leonardi, M.S., Chandre, F., Lazzari, C.R. "What does heat tell a mosquito? Characterization of the orientation behaviour of Aedes aegypti towards heat sources" . Journal of Insect Physiology, vol. 100, 2017, pp. 9-14.
http://dx.doi.org/10.1016/j.jinsphys.2017.04.010
---------- VANCOUVER ----------
Zermoglio, P.F., Robuchon, E., Leonardi, M.S., Chandre, F., Lazzari, C.R. What does heat tell a mosquito? Characterization of the orientation behaviour of Aedes aegypti towards heat sources. J. Insect Physiol. 2017;100:9-14.
http://dx.doi.org/10.1016/j.jinsphys.2017.04.010