Artículo

Cromberg, L.E.; Saez, T.M.M.; Otero, M.G.; Tomasella, E.; Alloatti, M.; Damianich, A.; Pozo Devoto, V.; Ferrario, J.; Gelman, D.; Rubinstein, M.; Falzone, T.L."Neuronal KIF5b deletion induces striatum-dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors" (2019) Journal of Neurochemistry
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The process of locomotion is controlled by fine-tuned dopaminergic neurons in the Substantia Nigra pars-compacta (SNpc) that projects their axons to the dorsal striatum regulating cortical innervations of medium spiny neurons. Dysfunction in dopaminergic neurotransmission within the striatum leads to movement impairments, gaiting defects, and hypo-locomotion. Due to their high polarity and extreme axonal arborization, neurons depend on molecular motor proteins and microtubule-based transport for their normal function. Transport defects have been associated with neurodegeneration since axonopathies, axonal clogging, microtubule destabilization, and lower motor proteins levels were described in the brain of patients with Parkinson's Disease and other neurodegenerative disorders. However, the contribution of specific motor proteins to the regulation of the nigrostriatal network remains unclear. Here, we generated different conditional knockout mice for the kinesin heavy chain 5B subunit (Kif5b) of Kinesin-1 to unravel its contribution to locomotion. Interestingly, mice with neuronal Kif5b deletion showed hypo-locomotion, movement initiation deficits, and coordination impairments. High pressure liquid chromatography determined that dopamine (DA) metabolism is impaired in neuronal Kif5b-KO, while no dopaminergic cell loss was observed. However, the deletion of Kif5b only in dopaminergic neurons is not sufficient to induce locomotor defects. Noteworthy, pharmacological stimulation of DA release together with agonist or antagonist of DA receptors revealed selective D2-dependent movement initiation defects in neuronal Kif5b-KO. Finally, subcellular fractionation from striatum showed that Kif5b deletion reduced the amount of dopamine D2 receptor in synaptic plasma membranes. Together, these results revealed an important role for Kif5b in the modulation of the striatal network that is relevant to the overall locomotor response. Open Science Badges: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. (Figure presented.). Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/. © 2019 International Society for Neurochemistry

Registro:

Documento: Artículo
Título:Neuronal KIF5b deletion induces striatum-dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors
Autor:Cromberg, L.E.; Saez, T.M.M.; Otero, M.G.; Tomasella, E.; Alloatti, M.; Damianich, A.; Pozo Devoto, V.; Ferrario, J.; Gelman, D.; Rubinstein, M.; Falzone, T.L.
Filiación:Instituto de Biología Celular y Neurociencias IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Biología y Medicina Experimental IBYME (CONICET), Buenos Aires, Argentina
Instituto de Investigaciones Farmacológicas ININFA, (CONICET-UBA), Buenos Aires, Argentina
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular INGEBI (CONICET), Buenos Aires, Argentina
Center for Translational Medicine (CTM), International Clinical Research Center, St. Anne's University Hospital (ICRC-FNUSA), Brno, Czech Republic
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:axonal transport; dopamine; dopamine receptors; Kif5b; locomotor response; nigrostriatal pathway
Año:2019
DOI: http://dx.doi.org/10.1111/jnc.14665
Handle:http://hdl.handle.net/20.500.12110/paper_00223042_v_n_p_Cromberg
Título revista:Journal of Neurochemistry
Título revista abreviado:J. Neurochem.
ISSN:00223042
CODEN:JONRA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223042_v_n_p_Cromberg

Referencias:

  • Aiso, M., Potter, W.Z., Saavedra, J.M., Axonal transport of dopamine D1 receptors in the rat brain (1987) Brain Res., 426, pp. 392-396
  • Anzalone, A., Lizardi-Ortiz, J.E., Ramos, M., Dual control of dopamine synthesis and release by presynaptic and postsynaptic dopamine D2 receptors (2012) J. Neurosci., 32, pp. 9023-9034
  • Ayton, S., George, J.L., Adlard, P.A., Bush, A.I., Cherny, R.A., Finkelstein, D.I., The effect of dopamine on MPTP-induced rotarod disability (2013) Neurosci. Lett., 543, pp. 105-109
  • Bäckman, C.M., Malik, N., Zhang, Y., Shan, L., Grinberg, A., Hoffer, B.J., Westphal, H.T.A., Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus (2006) Genesis, 390, pp. 383-390
  • Baik, J., Picetti, R., Saiardi, A., Thiriet, G., Dierich, A., Depaulis, A., Le Meur, M., Borrelli, E., Parkinsonian-like locomotor impairment in mice lacking dopamine D2R receptors (1995) Nature, 377, pp. 424-428
  • Bamford, N.S., Robinson, S., Palmiter, R., Joyce, J., Moore, C., Meshul, C., Dopamine modulates release from corticostriatal terminals (2004) J. Neurosci., 24, pp. 9541-9552
  • Bello, E.P., Mateo, Y., Gelman, D., Noaín, D., Shin, J., Low, M.J., Alvarez, V.A., Rubinstein, M., Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2R autoreceptors (2012) Nat. Neurosci., 14, pp. 1033-1038
  • Bolam, J.P., Hanley, J.J., Booth, P.A., Bevan, M.D., Synaptic organisation of the basal ganglia (2000) J. Anat., 196, pp. 527-542
  • Bolam, J.P., Pissadaki, E.K., Living on the edge with too many mouths to feed: why dopamine neurons die (2012) Mov. Disord., 12, pp. 1478-1483
  • Braak, H., Braak, E., Cognitive impairment in Parkinson's disease: amyloid plaques, neurofibrillary tangles, and neurophil threads in the cerebral cortex (1990) Neural Transm., 2, pp. 45-57
  • Cartelli, D., Ronchi, C., Maggioni, M.G., Rodighiero, S., Giavini, E., Cappelletti, G., Microtubule dysfunction precedes transport impairment and mitochondria damage in MPP + -induced neurodegeneration (2010) J. Neurochem., 115 (1), pp. 247-258
  • Cases, O., Seif, I., Grimsby, J., Chen, K., Pournin, S., Muller, U., Aguet, M., Shih, J.C., Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA (1995) Science, 268, pp. 1763-1766
  • Chu, Y., Morfini, G.A., Langhamer, L.B., He, Y., Brady, S.T., Kordower, J.H., Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease (2012) Brain, 135, pp. 2058-2073
  • Cui, J., Wang, Z., Cheng, Q., Lin, R., Zhang, X., Leung, P.S., Copeland, N.G., Huang, J., Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency (2011) Diabetes, 60, pp. 320-330
  • Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., Costa, R.M., Concurrent activation of striatal direct and indirect pathways during action initiation (2014) Nature, 494, pp. 238-242
  • De Vos, K.J., Grierson, A.J., Ackerley, S., Miller, C.C.J., Role of axonal transport in neurodegenerative diseases (2008) Annu. Rev. Neurosci., 31, pp. 151-173
  • Deboer, S.R., You, Y., Szodorai, A., Kaminska, A., Nwabuisi, E., Wang, B., Estrada-hernandez, T., Morfini, G., Conventional Kinesin holoenzymes are composed of heavy and light chain homodimers (2009) Biochemistry, 47, pp. 4535-4543
  • van Der Kooy, D., Weinreich, P., Nagy, J.I., Dopamine and opiate receptors: localization in the striatum and evidence for their axoplasmic transport in the nigrostriatal and striatonigral pathways (1986) Neuroscience, 19, pp. 139-146
  • Drago, J., Gerfen, C.R., Lachowicz, J.E., Altered striatal function in a mutant mouse lacking D1A dopamine receptors (1994) Proc. Natl Acad. Sci. USA, 91, pp. 12564-12568
  • Dukes, A.A., Bai, Q., Van Laar, V.S., Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure (2016) Neurobiol. Dis., 95, pp. 238-249
  • Fahn, S., Description of Parkinson’ s disease as a clinical syndrome (2003) Ann. N. Y. Acad. Sci., 991, pp. 1-14
  • Falzone, T.L., Stokin, G.B., Imaging amyloid precursor protein in vivo: an axonal transport assay (2012) Neurotrophic Factors. Methods in Molecular Biology (Methods and Protocols), 846, pp. 295-303. , Skaper S., ed), Humana Press, New York City, NY
  • Falzone, T.L., Gelman, D.M., Young, J.I., Grandy, D.K., Low, M.J., Rubinstein, M., Absence of dopamine D4 receptors results in enhanced reactivity to unconditioned, but not conditioned, fear (2002) Eur. J. Neurosci., 15, pp. 158-164
  • Falzone, T.L., Stokin, G.B., Lillo, C., Rodrigues, E.M., Westerman, E.L., Williams, D.S., Goldstein, L.S.B., Axonal stress kinase activation and tau misbehavior induced by kinesin-1 transport defects (2009) J. Neurosci., 29, pp. 5758-5767
  • Falzone, T.L., Gunawardena, S., McCleary, D., Reis, G.F., Goldstein, L.S.B., Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies (2010) Hum. Mol. Genet., 19, pp. 4399-4408
  • Gerfen, C.R., Surmeier, D.J., Modulation of striatal projection systems by dopamine (2011) Annu. Rev. Neurosci., 34, pp. 441-466
  • Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z.V.I., Chase, T.N., Monsma, F.J., Sibley, D.R., D1R and D2R dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons (1990) Science, 134, pp. 1429-1432
  • Glater, E.E., Megeath, L.J., Stowers, R.S., Schwarz, T.L., Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent (2006) J. Cell Biol., 173, pp. 545-557
  • Kaether, C., Skehel, P., Dotti, C.G., Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons (2000) Mol. Biol. Cell, 11, pp. 1213-1224
  • Kamal, A., Stokin, G.B., Yang, Z., Xia, C.H., Goldstein, L.S., Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I (2000) Neuron, 28, pp. 449-459
  • Kanai, Y., Okada, Y., Tanaka, Y., Harada, A., Terada, S., Hirokawa, N., KIF5C, a novel neuronal kinesin enriched in motor neurons (2000) J. Neurosci., 20, pp. 6374-6384
  • Kelly, M.A., Rubinstein, M., Phillips, T.J., Locomotor activity in D2R dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations (1998) J. Neurosci., 18, pp. 3470-3479
  • Kim, K.-M., Valenzano, K.J., Robinson, S.R., Yao, W.D., Barak, L.S., Caron, M.G., Differential regulation of the dopamine D 2 and D 3 receptors by G protein-coupled receptor kinases and β-arrestins (2001) J. Biol. Chem., 276, pp. 37409-37414
  • Kim-Han, J.S., Antenor-Dorsey, J.A., O'Malley, K.L., The parkinsonian mimetic, MPP + , specifically impairs mitochondrial transport in dopamine axons (2011) J. Neurosci., 31 (19), pp. 7212-7221
  • Kravitz, A.V., Freeze, B.S., Parker, P.R.L., Kay, K., Myo, T., Deisseroth, K., Kreitzer, A.C., Regulation of parkinsonian motor behaviors by optogenetic control of basal ganglia circuitry (2010) Nature, 466, pp. 622-626
  • Kumakura, K., Nomura, H., Toyoda, T., Hyperactivity in novel environment with increased dopamine and impaired novelty preference in apoptosis signal-regulating kinase 1 (ASK1)-deficient mice (2010) Neurosci. Res., 66, pp. 313-320
  • Li, Y., Roy, B.D., Wang, W., Zhang, L., Zhang, L., Sampson, S.B., Yang, Y., Lin, D.-T., Identification of two functionally distinct endosomal recycling pathways for dopamine D2 receptor (2012) J. Neurosci., 32, pp. 7178-7190
  • Lipkind, D., Sakov, A., Kafkafi, N., Elmer, G.I., Benjamini, Y., Golani, I., New replicable anxiety-related measures of wall vs. center behavior of mice in the open field (2004) J. Appl. Physiol. (1985), 97, pp. 347-359
  • Lisman, J.E., Grace, A.A., The hippocampal-VTA loop: controlling the entry of information into long-term memory (2005) Neuron, 46, pp. 703-713
  • Lu, X., Kim-Han, J.S., Harmon, S., Sakiyama-Elbert, S.E., O'Malley, K.L., The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons (2014) Mol. Neurodegener., 9, p. 17
  • Luque-Rojas, M.J., Galeano, P., Suárez, J., Araos, P., Santín, L.J., de Fonseca, F.R., Calvo, E.B., Hyperactivity induced by the dopamine D2/D3 receptor agonist quinpirole is attenuated by inhibitors of endocannabinoid degradation in mice (2012) Int. J. Neuropsychopharmacol., 16, pp. 661-676
  • Madisen, L., Zwingman, T.A., Sunkin, S.M., A robust and high-throughput Cre reporting and characterization system for the whole mouse brain (2010) Nat. Neurosci., 13, pp. 133-140
  • Matsuda, W., Furuta, T., Nakamura, K.C., Hioki, H., Fujiyama, F., Arai, R., Kaneko, T., Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum (2009) J. Neurosci., 29, pp. 444-453
  • Meiser, J., Weindl, D., Hiller, K., Complexity of dopamine metabolism (2013) Cell Commun. Signal., 11, p. 34
  • Migheli, R., Del, G.M., Spissu, Y., LRRK2 affects vesicle trafficking, neurotransmitter extracellular level and membrane receptor localization (2013) PLoS ONE, 8
  • Miki, H., Setou, M., Kaneshiro, K., Hirokawa, N., All kinesin superfamily protein, KIF, genes in mouse and human (2001) Proc. Natl Acad. Sci. USA, 98, pp. 7004-7011
  • Mink, J.W., The basal ganglia and involuntary movements (2003) Arch. Neurol., 60, pp. 1365-1368
  • Nakajima, K., Yin, X., Takei, Y., Seog, D.-H., Homma, N., Hirokawa, N., Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy (2012) Neuron, 76, pp. 945-961
  • Nakamura, T., Sato, A., Kitsukawa, T., Momiyama, T., Yamamori, T., Sasaoka, T., Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior (2014) Front. Integr. Neurosci., 8, p. 56
  • Pozo Devoto, V.M., Falzone, T.L., Mitochondrial dynamics in Parkinson's disease: a role for α-synuclein? (2017) Dis. Model Mech., 10 (9), pp. 1075-1087
  • Pozo Devoto, V.M., Dimopoulos, N., Alloatti, M., αSynuclein control of mitochondrial homeostasis in human-derived neurons is disrupted by mutations associated with Parkinson's disease (2017) Sci. Rep., 7, p. 5042
  • Rassu, M., Del Giudice, M.G., Sanna, S., Role of LRRK2 in the regulation of dopamine receptor trafficking (2017) PLoS ONE, 12, pp. 1-22
  • Rubinstein, M., Phillips, T.J., Bunzow, J.R., Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine (1997) Cell, 90, pp. 991-1001
  • Schmidt, M.R., Maritzen, T., Kukhtina, V., Higman, V.A., Doglio, L., Barak, N.N., Strauss, H., Haucke, V., Regulation of endosomal membrane traffic by a Gadkin/AP-1/kinesin KIF5 complex (2009) Proc. Natl Acad. Sci., 106, pp. 15344-15349
  • Setou, M., Nakagawa, T., Seog, D., Hirokawa, N., Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicles transport (2000) Science, 288 (5472), pp. 1796-1802
  • Sharp, T., Zetterström, T., Ljungberg, T., Ungerstedt, U., A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis (1987) Brain Res., 401, pp. 322-330
  • Shulman, J.M., De Jager, P.L., Feany, M.B., Parkinson's disease: genetics and pathogenesis (2011) Annu. Rev. Pathol., 6, pp. 193-222
  • Spillantini, M.G., Schmidt, M.L., Lee, V.M., Trojanowski, J.Q., Jakes, R., Goedert, M., Alpha-synuclein in Lewy bodies (1997) Nature, 388, pp. 839-840
  • Starr, B.S., Starr, M.S., Differential effects of dopamine D1R and D2R, agonists and antagonists on velocity of movement, rearing and grooming in the mouse. Implications for the roles of D1R, and D2R, receptors (1986) Neuropharmacology, 25, pp. 455-463
  • Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A., Hirokawa, N., Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria (1998) Cell, 93, pp. 1147-1158
  • Tronche, F., Kellendonk, C., Kretz, O., Gass, P., Anlag, K., Orban, P.C., Bock, R., Schütz, G., Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety (1999) Nat. Genet., 23, pp. 99-103
  • Twelvetrees, A.E., Yuen, E.Y., Arancibia-carcamo, I.L., Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin (2011) Neuron, 65, pp. 53-65
  • Usiello, A., Baik, J., Rougé-Pont, F., Picetti, R., Dierich, A., LeMeur, M., Piazza, P.V., Borrelli, E., Distinct functions of the two isoforms of dopamine D2R receptors (2000) Nature, 408, pp. 199-203
  • Vale, R.D., Reese, T.S., Sheetz, M.P., Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility (1985) Cell, 42, pp. 39-50
  • Volpicelli-Daley, L.A., Effects of α-synuclein on axonal transport (2017) Neurobiol. Dis., 105, pp. 321-327
  • Wang, H., Pickel, V., Dopamine D2 receptors are present in prefrontal cortical afferentsand their targets in patches of the rat caudate-putamen nucleus (2002) J. Comp. Neurol., 442, pp. 392-404
  • Westlund, K.N., Krakower, T.J., Kwan, S.W., Abell, C.W., Intracellular distribution of monoamine oxidase A in selected regions of rat and monkey brain and spinal cord (1993) Brain Res., 612, pp. 221-230
  • Xia, C.H., Roberts, E.A., Her, L.S., Liu, X., Williams, D.S., Cleveland, D.W., Goldstein, L.S.B., Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A (2003) J. Cell Biol., 161, pp. 55-66
  • Xu, M., Moratalla, R., Gold, L.H., Hiroi, N., Koob, G.F., Graybiel, A.M., Dopamine Dl receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses (1994) Cell, 79, pp. 729-742

Citas:

---------- APA ----------
Cromberg, L.E., Saez, T.M.M., Otero, M.G., Tomasella, E., Alloatti, M., Damianich, A., Pozo Devoto, V.,..., Falzone, T.L. (2019) . Neuronal KIF5b deletion induces striatum-dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors. Journal of Neurochemistry.
http://dx.doi.org/10.1111/jnc.14665
---------- CHICAGO ----------
Cromberg, L.E., Saez, T.M.M., Otero, M.G., Tomasella, E., Alloatti, M., Damianich, A., et al. "Neuronal KIF5b deletion induces striatum-dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors" . Journal of Neurochemistry (2019).
http://dx.doi.org/10.1111/jnc.14665
---------- MLA ----------
Cromberg, L.E., Saez, T.M.M., Otero, M.G., Tomasella, E., Alloatti, M., Damianich, A., et al. "Neuronal KIF5b deletion induces striatum-dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors" . Journal of Neurochemistry, 2019.
http://dx.doi.org/10.1111/jnc.14665
---------- VANCOUVER ----------
Cromberg, L.E., Saez, T.M.M., Otero, M.G., Tomasella, E., Alloatti, M., Damianich, A., et al. Neuronal KIF5b deletion induces striatum-dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors. J. Neurochem. 2019.
http://dx.doi.org/10.1111/jnc.14665