Artículo

Guarnieri, L.; Vendramin, L."Skew braces and the Yang-Baxter equation" (2017) Mathematics of Computation. 86(307):2519-2534
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Braces were introduced by Rump to study non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation. We generalize Rump's braces to the non-commutative setting and use this new structure to study not necessarily involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation. Based on results of Bachiller and Catino and Rizzo, we develop an algorithm to enumerate and construct classical and non-classical braces of small size up to isomorphism. This algorithm is used to produce a database of braces of small size. The paper contains several open problems, questions and conjectures. © 2017 American Mathematical Society.

Registro:

Documento: Artículo
Título:Skew braces and the Yang-Baxter equation
Autor:Guarnieri, L.; Vendramin, L.
Filiación:Departamento de Matemática - FCEN, Universidad de Buenos Aires, Pab. I - Ciudad Universitaria, Buenos Aires, 1428, Argentina
Año:2017
Volumen:86
Número:307
Página de inicio:2519
Página de fin:2534
DOI: http://dx.doi.org/10.1090/mcom/3161
Handle:http://hdl.handle.net/20.500.12110/paper_00255718_v86_n307_p2519_Guarnieri
Título revista:Mathematics of Computation
Título revista abreviado:Math. Comput.
ISSN:00255718
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255718_v86_n307_p2519_Guarnieri

Referencias:

  • Bachiller, D., Classification of braces of order p3 (2015) J. Pure Appl. Algebra, 219 (8), pp. 3568-3603. , MR3320237
  • Bachiller, D., Counterexample to a conjecture about braces (2016) J. Algebra, 453, pp. 160-176. , MR3465351
  • Bachiller, D., Cedo, F., Jespers, E., Solutions of the Yang-Baxter equation associated with a left brace, , arXiv:1503.02814
  • Baxter, R.J., Partition function of the eight-vertex lattice model (1972) Ann. Physics, 70, pp. 193-228. , MR0290733
  • Baxter, R.J., (1989) Exactly solved models in statistical mechanics, , Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, Reprint of the 1982 original. MR998375
  • Ben David, N., Ginosar, Y., On groups of central type, non-degenerate and bijective cohomology classes (2009) Israel J. Math, 172, pp. 317-335. , MR2534251
  • Besche, H.U., Eick, B., O'Brien, E.A., A millennium project: constructing small groups (2002) Internat. J. Algebra Comput, 12 (5), pp. 623-644. , MR1935567
  • Bosma, W., Cannon, J., Playoust, C., The Magma algebra system. I. The user languag, Computational algebra and number theory (London, 1993) (1997) J. Symbolic Comput, 24 (3-4), pp. 235-265. , MR1484478
  • Catino, F., Rizzo, R., Regular subgroups of the affine group and radical circle algebras (2009) Bull. Aust. Math. Soc, 79 (1), pp. 103-107. , MR2486886
  • Cedó, F., Jespers, E., del Río, Á., Involutive Yang-Baxter groups (2010) Trans. Amer. Math. Soc, 362 (5), pp. 2541-2558. , MR2584610
  • Cedó, F., Jespers, E., Okniński, J., Retractability of set theoretic solutions of the Yang-Baxter equation (2010) Adv. Math, 224 (6), pp. 2472-2484. , MR2652212
  • Cedó, F., Jespers, E., Okniński, J., Braces and the Yang-Baxter equation (2014) Comm. Math. Phys, 327 (1), pp. 101-116. , MR3177933
  • Dehornoy, P., Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs (2015) Adv. Math, 282, pp. 93-127. , MR3374524
  • Drinfel'd, V.G., On some unsolved problems in quantum group theory (1992) Quantum Groups (Leningrad, 1990), Lecture Notes in Math, 1510, pp. 1-8. , Springer, Berlin. MR1183474
  • Etingof, P., Schedler, T., Soloviev, A., Set-theoretical solutions to the quantum Yang-Baxter equation (1999) Duke Math. J, 100 (2), pp. 169-209. , MR1722951
  • (2015), Groups, Algorithms, and Programming, Version 4.7.8; Gateva-Ivanova, T., Set-theoretic solutions of the Yang-Baxter equation, , braces, and symmetric groups, arXiv:1507.02602
  • Gateva-Ivanova, T., A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation (2004) J. Math. Phys, 45 (10), pp. 3828-3858. , MR2095675
  • Gateva-Ivanova, T., Quadratic algebras, Yang-Baxter equation, and Artin-Schelter regularity (2012) Adv. Math, 230 (4-6), pp. 2152-2175. , MR2927367
  • Gateva-Ivanova, T., Cameron, P., Multipermutation solutions of the Yang-Baxter equation (2012) Comm. Math. Phys, 309 (3), pp. 583-621. , MR2885602
  • Gateva-Ivanova, T., Majid, S., Set-theoretic solutions of the Yang-Baxter equation, graphs and computations (2007) J. Symbolic Comput, 42 (11-12), pp. 1079-1112. , MR2368074
  • Gateva-Ivanova, T., Majid, S., Matched pairs approach to set theoretic solutions of the Yang-Baxter equation (2008) J. Algebra, 319 (4), pp. 1462-1529. , MR2383056
  • Gateva-Ivanova, T., Majid, S., Quantum spaces associated to multipermutation solutions of level two (2011) Algebr. Represent. Theory, 14 (2), pp. 341-376. , MR2776789
  • Gateva-Ivanova, T., Van den Bergh, M., Semigroups of I-type (1998) J. Algebra, 206 (1), pp. 97-112. , MR1637256
  • Jespers, E., Okniński, J., Monoids and groups of I-type (2005) Algebr. Represent. Theory, 8 (5), pp. 709-729. , MR2189580
  • Jespers, E., Okniński, J., Noetherian Semigroup Algebras (2007) Algebras and Applications, 7. , Springer, Dordrecht MR2301033
  • Kassel, C., Quantum Groups (1995) Graduate Texts in Mathematics, 155. , Springer-Verlag, New York MR1321145
  • Lebed, V., Vendramin, L., Homology of left non-degenerate set-theoretic solutions to the yang-baxter equation, , arXiv:1509.07067
  • Lu, J.-H., Yan, M., Zhu, Y.-C., On the set-theoretical Yang-Baxter equation (2000) Duke Math. J, 104 (1), pp. 1-18. , MR1769723
  • Majid, S., (1995) Foundations of Quantum Group Theory, , Cambridge University Press, Cambridge, MR1381692
  • Nelson, S., The combinatorial revolution in knot theory (2011) Notices Amer. Math. Soc, 58 (11), pp. 1553-1561. , MR2896084
  • Rump, W., A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation (2005) Adv. Math, 193 (1), pp. 40-55. , MR2132760
  • Rump, W., Modules over braces (2006) Algebra Discrete Math, 2, pp. 127-137. , MR2320986
  • Rump, W., Braces, radical rings, and the quantum Yang-Baxter equation (2007) J. Algebra, 307 (1), pp. 153-170. , MR2278047
  • Rump, W., Classification of cyclic braces (2007) J. Pure Appl. Algebra, 209 (3), pp. 671-685. , MR2298848
  • Rump, W., The brace of a classical group (2014) Note Mat, 34 (1), pp. 115-144. , MR3291816
  • Smoktunowicz, A., A note on set-theoretic solutions of the Yang-Baxter equation, , arXiv:1512.95542
  • Soloviev, A., Non-unitary set-theoretical solutions to the quantum Yang-Baxter equation (2000) Math. Res. Lett, 7 (5-6), pp. 577-596. , MR1809284
  • Takeuchi, M., Survey on matched pairs of groups-an elementary approach to the ESSLYZ theory (2003) Polish Acad. Sci., Warsaw, 61, pp. 305-331. , Noncommutative geometry and quantum groups (Warsaw, 2001), Banach Center Publ. MR2024436
  • Vendramin, L., Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova (2016) J. Pure Appl. Algebra, 220 (5), pp. 2064-2076. , MR3437282
  • Weinstein, A., Xu, P., Classical solutions of the quantum Yang-Baxter equation (1992) Comm. Math. Phys, 148 (2), pp. 309-343. , MR1178147
  • Yang, C.N., Some exact results for the many-body problem in one dimension with repulsive delta-function interaction (1967) Phys. Rev. Lett, 19, pp. 1312-1315. , MR0261870

Citas:

---------- APA ----------
Guarnieri, L. & Vendramin, L. (2017) . Skew braces and the Yang-Baxter equation. Mathematics of Computation, 86(307), 2519-2534.
http://dx.doi.org/10.1090/mcom/3161
---------- CHICAGO ----------
Guarnieri, L., Vendramin, L. "Skew braces and the Yang-Baxter equation" . Mathematics of Computation 86, no. 307 (2017) : 2519-2534.
http://dx.doi.org/10.1090/mcom/3161
---------- MLA ----------
Guarnieri, L., Vendramin, L. "Skew braces and the Yang-Baxter equation" . Mathematics of Computation, vol. 86, no. 307, 2017, pp. 2519-2534.
http://dx.doi.org/10.1090/mcom/3161
---------- VANCOUVER ----------
Guarnieri, L., Vendramin, L. Skew braces and the Yang-Baxter equation. Math. Comput. 2017;86(307):2519-2534.
http://dx.doi.org/10.1090/mcom/3161