Artículo

Azcarate, S.M.; Gil, R.; Smichowski, P.; Savio, M.; Camiña, J.M."Chemometric application in foodomics: Nutritional quality parameters evaluation in milk-based infant formula" (2017) Microchemical Journal. 130:1-6
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A method to verify the differentiating characteristics of milk-based infant formula is proposed in this work. In order to evaluate a classification of the milks according to their nutritional profile, the concentration of 24 elements were determinated. Supervised methods PCA-LDA, PLS-DA, and SIMCA were contrasted. PCA-LDA and SIMCA provided significantly better results for milk classification of the two studied classes (infant formula and infant formula fortified). As an alternative approach SIMCA was capable to discriminate an overlapped group consisting of baby milks administrated during first 6 months of life. Chemometric methods employed highlight four metal concentrations (Zn, Mn, Cu, and S) which could be associated to relevant nutritional parameters in baby growth. Thus, proposed methodology provides a simpler, faster and more affordable classification for simple study on Foodomics in milk-based infant formula. © 2016

Registro:

Documento: Artículo
Título:Chemometric application in foodomics: Nutritional quality parameters evaluation in milk-based infant formula
Autor:Azcarate, S.M.; Gil, R.; Smichowski, P.; Savio, M.; Camiña, J.M.
Filiación:Facultad Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Av. Uruguay 151, Santa Rosa, La Pampa, Argentina
Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Mendoza 109, Santa Rosa, LaPampa, Argentina
Instituto de Química de San Luis (CCT-San Luis)- Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis, Argentina
Comisión Nacional de Energía Atómica, Gerencia Química, Av. Gral Paz 1499, San Martín, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, Argentina
Palabras clave:Chemometrics; Foodomics; Inductively coupled plasma mass spectrometry; Milk-based infant formula
Año:2017
Volumen:130
Página de inicio:1
Página de fin:6
DOI: http://dx.doi.org/10.1016/j.microc.2016.07.016
Handle:http://hdl.handle.net/20.500.12110/paper_0026265X_v130_n_p1_Azcarate
Título revista:Microchemical Journal
Título revista abreviado:Microchem. J.
ISSN:0026265X
CODEN:MICJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0026265X_v130_n_p1_Azcarate

Referencias:

  • Picó, Y., Advanced Mass Spectrometry for Food Safety and Quality (2015), Elsevier Science; Cifuentes, A., Foodomics: Advanced Mass Spectrometry in Modern Food Science and Nutrition (2013), Wiley; Skov, T., Honoré, A.H., Jensen, H.M., Næs, T., Engelsen, S.B., Chemometrics in foodomics: handling data structures from multiple analytical platforms (2014) TrAC Trends Anal. Chem., 60, pp. 71-79
  • Machado, I., Bergmann, G., Pistón, M., A simple and fast ultrasound-assisted extraction procedure for Fe and Zn determination in milk-based infant formulas using flame atomic absorption spectrometry (FAAS) (2016) Food Chem., 194, pp. 373-376
  • Khan, N., Jeong, I.S., Hwang, I.M., Kim, J.S., Choi, S.H., Nho, E.Y., Choi, J.Y., Kim, K.S., Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS (2013) Food Chem., 141, pp. 3566-3570
  • INFANT, FORMULA-PART 107, CFR - Code of Federal Regulations Title 21 (2015), http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=107; Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants, C.S. Codex Alimentarius (2011), International Food Standards Rome, Italy; Abernethy, G., Higgs, K., Rapid detection of economic adulterants in fresh milk by liquid chromatography–tandem mass spectrometry (2013) J. Chromatogr. A, 1288, pp. 10-20
  • Santos, P.M., Pereira-Filho, E.R., Rodriguez-Saona, L.E., Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis (2013) Food Chem., 138, pp. 19-24
  • Jawaid, S., Talpur, F.N., Sherazi, S.T.H., Nizamani, S.M., Khaskheli, A.A., Rapid detection of melamine adulteration in dairy milk by SB-ATR–Fourier transform infrared spectroscopy (2013) Food Chem., 141, pp. 3066-3071
  • Botelho, B.G., Reis, N., Oliveira, L.S., Sena, M.M., Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA (2015) Food Chem., 181, pp. 31-37
  • Das, S., Goswami, B., Biswas, K., Milk adulteration and detection: a review (2016) Sens. Lett., 14, pp. 4-18
  • Kos, G., Lohninger, H., Krska, R., Development of a method for the determination of Fusarium fungi on corn using mid-infrared spectroscopy with attenuated total reflection and chemometrics (2003) Anal. Chem., 75, pp. 1211-1217
  • Tura, D., Prenzler, P.D., Bedgood, D.R., Jr., Antolovich, M., Robards, K., Varietal and processing effects on the volatile profile of Australian olive oils (2004) Food Chem., 84, pp. 341-349
  • Yu, H., MacGregor, J.F., Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods (2003) Chemom. Intell. Lab. Syst., 67, pp. 125-144
  • Santos, P.M., Pereira-Filho, E.R., Colnago, L.A., Detection and quantification of milk adulteration using time domain nuclear magnetic resonance (TD-NMR) (2016) Microchem. J., 124, pp. 15-19
  • Herrero Latorre, C., Peña Crecente, R.M., García Martín, S., Barciela García, J., A fast chemometric procedure based on NIR data for authentication of honey with protected geographical indication (2013) Food Chem., 141, pp. 3559-3565
  • Zhao, M., Downey, G., O'Donnell, C.P., Detection of adulteration in fresh and frozen beefburger products by beef offal using mid-infrared ATR spectroscopy and multivariate data analysis (2014) Meat Sci., 96, pp. 1003-1011
  • López, M.I., Trullols, E., Callao, M.P., Ruisánchez, I., Multivariate screening in food adulteration: untargeted versus targeted modelling (2014) Food Chem., 147, pp. 177-181
  • Galtier, O., Abbas, O., Le Dréau, Y., Rebufa, C., Kister, J., Artaud, J., Dupuy, N., Comparison of PLS1-DA, PLS2-DA and SIMCA for classification by origin of crude petroleum oils by MIR and virgin olive oils by NIR for different spectral regions (2011) Vib. Spectrosc., 55, pp. 132-140
  • Azcarate, S.M., Savio, M., Smichowski, P., Martinez, L.D., Camiña, J.M., Gil, R.A., Single-Step Solubilization of Milk Samples with N,N-Dimethylformamide for inductively Coupled Plasma-Mass Spectrometry Analysis and Classification Based on their Elemental Composition, Talanta (2015), 143, pp. 64-70; Lavine, B., A User-Friendly Guide to Multivariate Calibration and Classification, Tomas Naes, Tomas Isakson, Tom Fearn and Tony Davies (2002) J. Chemom., 17, pp. 571-572. , NIR Publications Chichester (ISBN 0-9528666-2-5, £45.00) 2003)
  • Handbook of Chemometrics and Qualimetrics (1997), Elsevier Science; Brereton, R.G., Calibration, Chemometrics (2003), pp. 271-338. , John Wiley & Sons, Ltd; Szöllősi, D., Dénes, D.L., Firtha, F., Kovács, Z., Fekete, A., Comparison of six multiclass classifiers by the use of different classification performance indicators (2012) J. Chemom., 26, pp. 76-84
  • Coomans, D., Massart, D.L., Kaufman, L., Optimization by statistical linear discriminant analysis in analytical chemistry (1979) Anal. Chim. Acta, 112, pp. 97-122
  • Galvão, R.K.H., Araujo, M.C.U., José, G.E., Pontes, M.J.C., Silva, E.C., Saldanha, T.C.B., A method for calibration and validation subset partitioning (2005) Talanta, 67, pp. 736-740
  • Chemometrics: Theory and Application, Analytical Chemistry (1978), 50. , (890A-890A); Durante, C., Bro, R., Cocchi, M., A classification tool for N-way array based on SIMCA methodology (2011) Chemom. Intell. Lab. Syst., 106, pp. 73-85
  • Seiler, H.G., Sigel, A., Sigel, H., Handbook on Toxicity of Inorganic Compounds (1998), Marcel Dekker, Inc. New York

Citas:

---------- APA ----------
Azcarate, S.M., Gil, R., Smichowski, P., Savio, M. & Camiña, J.M. (2017) . Chemometric application in foodomics: Nutritional quality parameters evaluation in milk-based infant formula. Microchemical Journal, 130, 1-6.
http://dx.doi.org/10.1016/j.microc.2016.07.016
---------- CHICAGO ----------
Azcarate, S.M., Gil, R., Smichowski, P., Savio, M., Camiña, J.M. "Chemometric application in foodomics: Nutritional quality parameters evaluation in milk-based infant formula" . Microchemical Journal 130 (2017) : 1-6.
http://dx.doi.org/10.1016/j.microc.2016.07.016
---------- MLA ----------
Azcarate, S.M., Gil, R., Smichowski, P., Savio, M., Camiña, J.M. "Chemometric application in foodomics: Nutritional quality parameters evaluation in milk-based infant formula" . Microchemical Journal, vol. 130, 2017, pp. 1-6.
http://dx.doi.org/10.1016/j.microc.2016.07.016
---------- VANCOUVER ----------
Azcarate, S.M., Gil, R., Smichowski, P., Savio, M., Camiña, J.M. Chemometric application in foodomics: Nutritional quality parameters evaluation in milk-based infant formula. Microchem. J. 2017;130:1-6.
http://dx.doi.org/10.1016/j.microc.2016.07.016