Artículo

Yaneff, A.; Sigaut, L.; Marquez, M.; Alleva, K.; Pietrasanta, L.I.; Amodeo, G. "Heteromerization of PIP aquaporins affects their intrinsic permeability" (2014) Proceedings of the National Academy of Sciences of the United States of America. 111(1):231-236
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The plant aquaporin plasma membrane intrinsic proteins (PIP) subfamily represents one of the main gateways for water exchange at the plasma membrane (PM). A fraction of this subfamily, known as PIP1, does not reach the PM unless they are coexpressed with a PIP2 aquaporin. Although ubiquitous and abundantly expressed, the role and properties of PIP1 aquaporins have therefore remained masked. Here, we unravel how FaPIP1;1, a fruit-specific PIP1 aquaporin from Fragaria x ananassa, contributes to the modulation of membrane water permeability (Pf) and pH aquaporin regulation. Our approach was to combine an experimental and mathematical model design to test its activity without affecting its trafficking dynamics. We demonstrate that FaPIP1;1 has a high water channel activity when coexpressed as well as how PIP1-PIP2 affects gating sensitivity in terms of cytosolic acidification. PIP1-PIP2 random heterotetramerization not only allows FaPIP1;1 to arrive at the PMbut also produces an enhancement of FaPIP2;1 activity. In this context, we propose that FaPIP1;1 is a key participant in the regulation of water movement across the membranes of cells expressing both aquaporins.

Registro:

Documento: Artículo
Título:Heteromerization of PIP aquaporins affects their intrinsic permeability
Autor:Yaneff, A.; Sigaut, L.; Marquez, M.; Alleva, K.; Pietrasanta, L.I.; Amodeo, G.
Filiación:Instituto de Biodiversidad y Biología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, C1428EHA Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Centro de Microscopías Avanzadas, Departamento de Física, Facultad de Ciencias Exactas y Naturales, C1428EHA Buenos Aires, Argentina
Idioma: Inglés
Año:2014
Volumen:111
Número:1
Página de inicio:231
Página de fin:236
DOI: http://dx.doi.org/10.1073/pnas.1316537111
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_00278424_v111_n1_p231_Yaneff

Referencias:

  • Maurel, C., Verdoucq, L., Luu, D.-T., Santoni, V., Plant aquaporins: Membrane channels with multiple integrated functions (2008) Annu Rev Plant Biol, 59, pp. 595-624
  • Bienert, G.P., Bienert, M.D., Jahn, T.P., Boutry, M., Chaumont, F., Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates (2011) Plant J, 66 (2), pp. 306-317
  • Ma, J.F., A silicon transporter in rice (2006) Nature, 440 (7084), pp. 688-691
  • Takano, J., The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation (2006) Plant Cell, 18 (6), pp. 1498-1509
  • Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M.J., Jung, R., Aquaporins constitute a large and highly divergent protein family in maize (2001) Plant Physiol, 125 (3), pp. 1206-1215
  • Sakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., Maeshima, M., Identification of rice aquaporin genes and analysis of their expression and function (2005) Plant Cell Physiol, 46 (9), pp. 1568-1577
  • Johanson, U., The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants (2001) Plant Physiol, 126 (4), pp. 1358-1369
  • Shelden, M., Howitt, S., Kaiser, B., Tyerman, S., Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera (2009) Funct Plant Biol, 36 (12), pp. 1065-1078
  • Sade, N., Improving plant stress tolerance and yield production: Is the tonoplast aquaporin SlTIP2; 2 a key to isohydric to anisohydric conversion? (2009) New Phytol, 181 (3), pp. 651-661
  • Gupta, A.B., Sankararamakrishnan, R., Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins from evolutionary perspective (2009) BMC Plant Biol, 9, p. 134
  • Park, W., Scheffler, B.E., Bauer, P.J., Campbell, B.T., Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.) (2010) BMC Plant Biol, 10, p. 142
  • Zhang, Y., Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.) (2013) PLoS ONE, 8 (2), pp. e56312
  • Martre, P., Plasma membrane aquaporins play a significant role during recovery from water deficit (2002) Plant Physiol, 130 (4), pp. 2101-2110
  • Fetter, K., Van Wilder, V., Moshelion, M., Chaumont, F., Interactions between plasma membrane aquaporins modulate their water channel activity (2004) Plant Cell, 16 (1), pp. 215-228
  • Fraysse, L.C., Wells, B., McCann, M.C., Kjellbom, P., Specific plasma membrane aquaporins of the PIP1 subfamily are expressed in sieve elements and guard cells (2005) Biol Cell, 97 (7), pp. 519-534
  • Hachez, C., Heinen, R.B., Draye, X., Chaumont, F., The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation (2008) Plant Mol Biol, 68 (4-5), pp. 337-353
  • Horie, T., Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots (2011) Plant Cell Physiol, 52 (4), pp. 663-675
  • Törnroth-Horsefield, S., Structural mechanism of plant aquaporin gating (2006) Nature, 439 (7077), pp. 688-694
  • Li, X., Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation (2011) Plant Cell, 23 (10), pp. 3780-3797
  • Tournaire-Roux, C., Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins (2003) Nature, 425 (6956), pp. 393-397
  • Bellati, J., Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression (2010) Plant Mol Biol, 74 (1-2), pp. 105-118
  • Verdoucq, L., Grondin, A., Maurel, C., Structure-function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons (2008) Biochem J, 415 (3), pp. 409-416
  • Johansson, I., Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation (1998) Plant Cell, 10 (3), pp. 451-459
  • Azad, A.K., Sawa, Y., Ishikawa, T., Shibata, H., Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals (2004) Plant Cell Physiol, 45 (5), pp. 608-617
  • Otto, B., Aquaporin tetramer composition modifies the function of tobacco aquaporins (2010) J Biol Chem, 285 (41), pp. 31253-31260
  • Ding, X., Iwasaki, I., Kitagawa, Y., Overexpression of a lily PIP1 gene in tobacco increased the osmotic water permeability of leaf cells (2004) Plant Cell Environ, 27 (2), pp. 177-186
  • Suga, S., Maeshima, M., Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis (2004) Plant Cell Physiol, 45 (7), pp. 823-830
  • Liu, C., Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination (2013) Plant Physiol Biochem, 63, pp. 151-158
  • Wei, W., HvPIP1;6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues (2007) Plant Cell Physiol, 48 (8), pp. 1132-1147
  • Gaspar, M., Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea (2003) Plant Sci, 165 (1), pp. 21-31
  • Zelazny, E., FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization (2007) Proc Natl Acad Sci USA, 104 (30), pp. 12359-12364
  • Jozefkowicz, C., Loop A is critical for the functional interaction of two Beta vulgaris PIP aquaporins (2013) PLoS ONE, 8 (3), pp. e57993
  • Matsumoto, T., Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice (2009) Plant Cell Physiol, 50 (2), pp. 216-229
  • Vandeleur, R.K., The role of plasma membrane intrinsic protein aquaporins in water transport through roots: Diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine (2009) Plant Physiol, 149 (1), pp. 445-460
  • Mahdieh, M., Mostajeran, A., Horie, T., Katsuhara, M., Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants (2008) Plant Cell Physiol, 49 (5), pp. 801-813
  • Alleva, K., Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2;1) of strawberry fruit (2010) J Exp Bot, 61 (14), pp. 3935-3945
  • Jung, J.S., Preston, G.M., Smith, B.L., Guggino, W.B., Agre, P., Molecular structure of the water channel through aquaporin CHIP. The hourglass model (1994) J Biol Chem, 269 (20), pp. 14648-14654
  • Murata, K., Structural determinants of water permeation through aquaporin- 1 (2000) Nature, 407 (6804), pp. 599-605
  • Sui, H., Han, B.G., Lee, J.K., Walian, P., Jap, B.K., Structural basis of water-specific transport through the AQP1 water channel (2001) Nature, 414 (6866), pp. 872-878
  • Wang, W., Xia, J., Kass, R.S., MinK-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IsK channel (1998) J Biol Chem, 273 (51), pp. 34069-34074
  • Berg, A.P., Talley, E.M., Manger, J.P., Bayliss, D.A., Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK- 3 (KCNK9) subunits (2004) J Neurosci, 24 (30), pp. 6693-6702
  • Barrera, N.P., Henderson, R.M., Murrell-Lagnado, R.D., Edwardson, J.M., The stoichiometry of P2X2/6 receptor heteromers depends on relative subunit expression levels (2007) Biophys J, 93 (2), pp. 505-512
  • Stewart, A.P., The Kv7.2/Kv7.3 heterotetramer assembles with a random subunit arrangement (2012) J Biol Chem, 287 (15), pp. 11870-11877
  • Waschk, D.E.J., Fabian, A., Budde, T., Schwab, A., Dual-color quantum dot detection of a heterotetrameric potassium channel (hKCa3.1) (2011) Am J Physiol Cell Physiol, 300 (4), pp. C843-C849
  • Barrera, N.P., Atomic force microscopy reveals the stoichiometry and subunit arrangement of the α4β3δ GABA(A) receptor (2008) Mol Pharmacol, 73 (3), pp. 960-967
  • Kobori, T., Smith, G.D., Sandford, R., Edwardson, J.M., The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2:2 stoichiometry and an alternating subunit arrangement (2009) J Biol Chem, 284 (51), pp. 35507-35513
  • Neely, J.D., Christensen, B.M., Nielsen, S., Agre, P., Heterotetrameric composition of aquaporin-4 water channels (1999) Biochemistry, 38 (34), pp. 11156-11163
  • Bienert, G.P., A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers (2012) Biochem J, 445 (1), pp. 101-111
  • Ludewig, U., Dynowski, M., Plant aquaporin selectivity: Where transport assays, computer simulations and physiology meet (2009) Cell Mol Life Sci, 66 (19), pp. 3161-3175
  • Hachez, C., Besserer, A., Chevalier, A.S., Chaumont, F., Insights into plant plasma membrane aquaporin trafficking (2013) Trends Plant Sci, 18 (6), pp. 344-352
  • Luu, D.T., Maurel, C., Aquaporin trafficking in plant cells: An emerging membraneprotein model (2013) Traffic, 14 (6), pp. 629-635
  • Zhang, R.B., Verkman, A.S., Water and urea permeability properties of Xenopus oocytes: Expression of mRNA from toad urinary bladder (1991) Am J Physiol, 260 (1 PART 1), pp. C26-C34
  • Agre, P., Mathai, J.C., Smith, B.L., Preston, G.M., Functional analyses of aquaporin water channel proteins (1999) Methods Enzymol, 294, pp. 550-572
  • Brooks, J.M., Wessel, G.M., Selective transport and packaging of the major yolk protein in the sea urchin (2003) Dev Biol, 261 (2), pp. 353-370
  • Németh-Cahalan, K.L., Kalman, K., Froger, A., Hall, J.E., Zinc modulation of water permeability reveals that aquaporin 0 functions as a cooperative tetramer (2007) J Gen Physiol, 130 (5), pp. 457-464
  • Akaike, H., A new look at the statistical model identification (1974) IEEE Trans Automat Contr, 19 (6), pp. 716-723

Citas:

---------- APA ----------
Yaneff, A., Sigaut, L., Marquez, M., Alleva, K., Pietrasanta, L.I. & Amodeo, G. (2014) . Heteromerization of PIP aquaporins affects their intrinsic permeability. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 231-236.
http://dx.doi.org/10.1073/pnas.1316537111
---------- CHICAGO ----------
Yaneff, A., Sigaut, L., Marquez, M., Alleva, K., Pietrasanta, L.I., Amodeo, G. "Heteromerization of PIP aquaporins affects their intrinsic permeability" . Proceedings of the National Academy of Sciences of the United States of America 111, no. 1 (2014) : 231-236.
http://dx.doi.org/10.1073/pnas.1316537111
---------- MLA ----------
Yaneff, A., Sigaut, L., Marquez, M., Alleva, K., Pietrasanta, L.I., Amodeo, G. "Heteromerization of PIP aquaporins affects their intrinsic permeability" . Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 1, 2014, pp. 231-236.
http://dx.doi.org/10.1073/pnas.1316537111
---------- VANCOUVER ----------
Yaneff, A., Sigaut, L., Marquez, M., Alleva, K., Pietrasanta, L.I., Amodeo, G. Heteromerization of PIP aquaporins affects their intrinsic permeability. Proc. Natl. Acad. Sci. U. S. A. 2014;111(1):231-236.
http://dx.doi.org/10.1073/pnas.1316537111