Amidon, W.H.; Fisher, G.B.; Burbank, D.W.; Ciccioli, P.L.; Alonso, R.N.; Gorin, A.L.; Silverhart, P.H.; Kylander-Clark, A.R.C.; Christoffersen, M.S. "Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods" (2017) Proceedings of the National Academy of Sciences of the United States of America. 114(25):6475-6479
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Although Earth's climate history is best known through marine records, the corresponding continental climatic conditions drive the evolution of terrestrial life. Continental conditions during the latest Miocene are of particular interest because global faunal turnover is roughly synchronous with a period of global glaciation from 6.2-5.5 Ma and with the Messinian Salinity Crisis from 6.0-5.3 Ma. Despite the climatic and ecological significance of this period, the continental climatic conditions associated with it remain unclear. We address this question using erosion rates of ancient watersheds to constrain Mio-Pliocene climatic conditions in the south-central Andes near 30° S. Our results show two slowdowns in erosion rate, one from 6.1-5.2 Ma and another from 3.6 to 3.3 Ma, which we attribute to periods of continental aridity. This view is supported by synchrony with other regional proxies for aridity and with the timing of glacial "cold" periods as recorded by marine proxies, such as the M2 isotope excursion. We thus conclude that aridity in the south-central Andes is associated with cold periods at high southern latitudes, perhaps due to a northward migration of the Southern Hemisphere westerlies, which disrupted the South American Low Level Jet that delivers moisture to southeastern South America. Colder glacial periods, and possibly associated reductions in atmospheric CO2, thus seem to be an important driver of Mio-Pliocene ecological transitions in the central Andes. Finally, this study demonstrates that paleo-erosion rates can be a powerful proxy for ancient continental climates that lie beyond the reach of most lacustrine and glacial archives.


Documento: Artículo
Título:Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods
Autor:Amidon, W.H.; Fisher, G.B.; Burbank, D.W.; Ciccioli, P.L.; Alonso, R.N.; Gorin, A.L.; Silverhart, P.H.; Kylander-Clark, A.R.C.; Christoffersen, M.S.
Filiación:Geology Department, Middlebury College, Middlebury, VT 05753, United States
Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, United States
Earth Research Institute, University of California, Santa Barbara, CA 93106, United States
Departamento de Ciencias Geológicas, Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1428EHA, Argentina
Instituto Superior de Correlación Geológica, Universidad Nacional de Salta-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Salta, 4400, Argentina
Palabras clave:M2; Messinian; Miocene; Pliocene; Precipitation; carbon; water; Article; cold; environmental erosion; glacial period; latitude; mass extinction; Miocene; Pliocene; precipitation; priority journal; salinity; sea surface temperature; South America; Southern Hemisphere; vegetation; watershed
Página de inicio:6475
Página de fin:6479
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
CAS:carbon, 7440-44-0; water, 7732-18-5


  • Hewitt, G.M., Genetic consequences of climatic oscillations in the Quaternary (2004) Philos Trans R Soc Lond B Biol Sci, 359, pp. 183-195. , discussion 195
  • De Menocal, P.B., African climate change and faunal evolution during the Pliocene-Pleistocene (2004) Earth Planet Sci Lett, 220, pp. 3-24
  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., Trends, rhythms, and aberrations in global climate 65 Ma to present (2001) Science, 292, pp. 686-693
  • Arakaki, M., Contemporaneous and recent radiations of the world's major succulent plant lineages (2011) Proc Natl Acad Sci USA, 108, pp. 8379-8384
  • Dupont, L.M., Rommerskirchen, F., Mollenhauer, G., Schefuß, E., Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants (2013) Earth Planet Sci Lett, 375, pp. 408-417
  • Cerling, T.E., Wang, Y., Quade, J., Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene (1993) Nature, 361, pp. 344-345
  • Quade, J., Cerling, T.E., Expansion of C4 grasses in the Late Miocene of Northern Pakistan: Evidence from stable isotopes in paleosols (1995) Palaeogeogr Palaeoclimatol Palaeoecol, 115, pp. 91-116
  • Ehleringer, J.R., Cerling, T.E., Helliker, B.R., C4 photosynthesis, atmospheric CO2, and climate (1997) Oecologia, 112, pp. 285-299
  • Still, C.J., Berry, J.A., Collatz, G.J., DeFries, R.S., Global distribution of C3 and C4 vegetation: Carbon cycle implications (2003) Global Biogeochem Cycles, 17, pp. 61-614
  • Pagani, M., Freeman, K.H., Arthur, M.A., Late miocene atmospheric CO(2) concentrations and the expansion of C(4) grasses (1999) Science, 285, pp. 876-879
  • Freeman, K.H., Colarusso, L.A., Molecular and isotopic records of C4 grassland expansion in the late miocene (2001) Geochim Cosmochim Acta, 65, pp. 1439-1454
  • Bolton, C.T., Stoll, H.M., Late Miocene threshold response of marine algae to carbon dioxide limitation (2013) Nature, 500, pp. 558-562
  • Bolton, C.T., Decrease in coccolithophore calcification and CO2 since the middle Miocene (2016) Nat Commun, 7, p. 10284
  • Latorre, C., Quade, J., McIntosh, W.C., The expansion of C4 grasses and global change in the late Miocene; Stable isotope evidence from the Americas (1997) Earth Planet Sci Lett, 146, pp. 83-96
  • Quade, J., Jml, C., Ojha, T.P., Adam, J., Harrison, T.M., Late Miocene environmental change in Nepal and the northern Indian subcontinent: Stable isotopic evidence from paleosols (1995) Geol Soc Am Bull, 107, pp. 1381-1397
  • Cosentino, D., Refining the Mediterranean "messinian gap" with highprecision U-Pb zircon geochronology, central and northern Italy (2013) Geology, 41, pp. 323-326
  • Pérez-Asensio, J.N., Aguirre, J., Jiménez-Moreno, G., Schmiedl, G., Civis, J., Glacioeustatic control on the origin and cessation of the Messinian salinity crisis (2013) Global Planet Change, 111, pp. 1-8
  • Garcia-Castellanos, D., Villaseñor, A., Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc (2011) Nature, 480, pp. 359-363
  • Ohneiser, C., Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding (2015) Nat Commun, 6, p. 8765
  • Hilgen, F., Kuiper, K., Krijgsman, W., Snel, E., Van Der Laan, E., Astronomical tuning as the basis for high resolution chronostratigraphy: The intricate history of the Messinian Salinity Crisis (2007) Stratigraphy, 4, pp. 231-238
  • Hodell, D.A., Curtis, J.H., Sierro, F.J., Raymo, M.E., Correlation of late Miocene to early Pliocene sequences between the Mediterranean and North Atlantic (2001) Paleoceanography, 16, pp. 164-178
  • Hodell, D.A., Elmstrom, K.M., Kennett, J.P., Latest miocene benthic δ18O changes, global ice volume, sea level and the 'Messinian salinity crisis' (1986) Nature, 320, pp. 411-414
  • Larsen, H.C., Seven million years of glaciation in Greenland (1994) Science, 264, pp. 952-955. , ODP Leg 152 Scientific Party
  • Mercer, J.H., Cenozoic glaciation in the Southern Hemisphere (1983) Annu Rev Earth Planet Sci, 11, pp. 99-132
  • Passey, B.H., Cerling, T.E., In situ stable isotope analysis (δ13C, δ18O) of very small teeth using laser ablation GC/IRMS (2006) Chem Geol, 235, pp. 238-249
  • Uno, K.T., Polissar, P.J., Jackson, K.E., De Menocal, P.B., Neogene biomarker record of vegetation change in eastern Africa (2016) Proc Natl Acad Sci USA, 113, pp. 6355-6363
  • Hynek, S.A., Small mammal carbon isotope ecology across the Miocene- Pliocene boundary, northwestern Argentina (2012) Earth Planet Sci Lett, 321-322, pp. 177-188
  • Bywater-Reyes, S., Carrapa, B., Clementz, M., Schoenbohm, L., Effect of late Cenozoic aridification on sedimentation in the Eastern Cordillera of northwest Argentina (Angastaco Basin) (2010) Geology (Boulder), 38, pp. 235-238
  • Fosdick, J.C., Carrapa, B., Ortíz, G., Faulting and erosion in the Argentine Precordillera during changes in subduction regime: Reconciling bedrock cooling and detrital records (2015) Earth Planet Sci Lett, 432, pp. 73-83
  • Jordan, T.E., Unsteady and spatially variable evolution of the Neogene Andean Bermejo foreland basin, Argentina (2001) J S Am Earth Sci, 14, pp. 775-798
  • Jordan, T.E., Allmendinger, R.W., Damanti, J.F., Drake, R.E., Chronology of motion in a complete thrust belt: The Precordillera, 30-31 degrees S, Andes Mountains (1993) J Geol, 101, pp. 135-156
  • Coughlin, T.J., O'Sullivan, P.B., Kohn, B.P., Holcombe, R.J., Apatite fission-track thermochronology of the Sierras Pampeanas, central western Argentina: Implications for the mechanism of plateau uplift in the Andes (1988) Geology, 26, pp. 999-1002
  • Strecker, M.R., Tectonics and climate of the southern central Andes (2007) Annu Rev Earth Planet Sci, 35, pp. 747-787
  • Pingel, H., Pliocene orographic barrier uplift in the southern Central Andes (2014) Geology, 42, pp. 691-694
  • Rohrmann, A., Miocene orographic uplift forces rapid hydrological change in the southern central Andes (2016) Sci Rep, 6, p. 35678
  • Bookhagen, B., Strecker, M.R., Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes (2012) Earth Planet Sci Lett, 327-328, pp. 97-110
  • Charreau, J., Paleo-erosion rates in Central Asia since 9Ma: A transient increase at the onset of Quaternary glaciations? (2011) Earth Planet Sci Lett, 304, pp. 85-92
  • Val, P., Hoke, G.D., Fosdick, J.C., Wittmann, H., Reconciling tectonic shortening, sedimentation and spatial patterns of erosion from 10Be paleo-erosion rates in the Argentine Precordillera (2016) Earth Planet Sci Lett, 450, pp. 173-185
  • Puchol, N., Limited impact of Quaternary glaciations on denudation rates in Central Asia (2016) Geol Soc Am Bull, 129, pp. 479-499
  • Amidon, W.H., U-Pb ages of detrital and volcanic zircons of the Toro Negro Formation, northwestern Argentina: Age, provenance and sedimentation rates (2016) J S Am Earth Sci, 70, pp. 237-250
  • Ruskin, B.G., Jordan, T.E., Climate change across continental sequence boundaries: Paleopedology and lithofacies of Iglesia Basin, northwestern Argentina (2007) J Sediment Res, 77, pp. 661-679
  • Peck, D.M., Missimer, T.M., Slater, D.H., Wise, S.W., Jr., O'Donnell, T.H., Late Miocene glacial-eustatic lowering of sea level: Evidence from the Tamiami Formation of South Florida (1979) Geology (Boulder), 7, pp. 285-288
  • Loutit, T.S., Keigwin, L.D., Jr., Stable isotopic evidence for latest Miocene sea-level fall in the Mediterranean region (1982) Nature, 300, pp. 163-166
  • Loutit, T.S., Kennett, J.P., Application of carbon isotope stratigraphy to late miocene shallow marine sediments, New Zealand (1979) Science, 204, pp. 1196-1199
  • Shackleton, N.J., Kennett, J.P., Late Cenozoic oxygen and carbon isotopic changes at DSDP Site 284: Implications for glacial history of the Northern Hemisphere and Antarctica (1975) Initial Rep Deep Sea Drill Proj, 29, pp. 801-807
  • Hayes, D.E., Frakes, L.A., General synthesis, Deep Sea Drilling Project Leg 28 (1975) Initial Rep Deep Sea Drill Proj, 28, pp. 919-942
  • Lisiecki, L.E., Raymo, M.E., A Pliocene-Pleistocene stack of 57 globally disturbed benthic δ18O records (2005) Paleoceanography, 20, p. PA1003
  • Mercer, J.H., Glacial history of southernmost South America (1976) Quat Res, 6, pp. 125-166
  • Vizcaino, S.F., Farina, R.A., Zarate, M.A., Bargo, M.S., Schultz, P., Palaeoecological implications of the mid-Pliocene faunal turnover in the Pampean region (Argentina) (2004) Palaeogeogr Palaeoclimatol Palaeoecol, 213, pp. 101-113
  • Schultz, P.H., Zarate, M., Hames, W., Camilion, C., King, J., A 3.3-Ma impact in Argentina and possible consequences (1998) Science, 282, pp. 2061-2063
  • Ortiz, P.E., Exceptional late Pliocene microvertebrate diversity in northwestern Argentina reveals a marked small mammal turnover (2012) Palaeogeogr Palaeoclimatol Palaeoecol, 361-362, pp. 21-37
  • Hodell, D.A., Venz, K., Toward a high-resolution stable isotopic record of the Southern Ocean during the Pliocene-Pleistocene (4.8 to 0.8 Ma) (1992) The Antarctic Paleoenvironment: A Perspective on Global Change: Part One, 56, pp. 265-310. , eds Kennett JP, Warkne DA (American Geophysical Union, Washington, DC)
  • Kennett, J.P., Hodell, D.A., Evidence for relative climatic stability of Antarctica during the early Pliocene: A marine perspective (1993) Geogr Ann, ser A, 75, pp. 205-220
  • Bohaty, S.M., Harwood, D.M., Southern Ocean Pliocene paleotemperature variation from high-resolution silicoflagellate biostratigraphy (1998) Mar Micropaleontol, 33, pp. 241-272
  • Keany, J., Paleoclimatic trends in early and middle Pliocene deep-sea sediments of the Antarctic (1978) Mar Micropaleontol, 3, pp. 35-49
  • Ciesielski, P.F., Grinstead, G.P., Pliocene variations in the position of the Antarctic convergence in the Southwest Atlantic (1986) Paleoceanography, 1, pp. 197-232
  • Barron, J.A., Diatom constraints on the position of the Antarctic Polar Front in the middle part of the Pliocene (1996) Mar Micropaleontol, 27, pp. 195-213
  • Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J., Present-day South American climate (2009) Palaeogeogr Palaeoclimatol Palaeoecol, 281, pp. 180-195
  • Romatschke, U., Houze, R.A., Jr., Extreme summer convection in South America (2010) J Clim, 23, pp. 3761-3791
  • Castañeda, M.E., Ulke, A.G., Analysis of atmospheric conditions associated to CHACO events of the Low Level Jet East of the Andes and their implications for regional transport (2015) Int J Climatol, 35, pp. 4126-4138
  • Rohrmann, A., Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes (2014) Earth Planet Sci Lett, 407, pp. 187-195
  • Nicolini, M., Saulo, A.C., Modeled Chaco low-level jets and related precipitation patterns during the 1997-1998 warm season (2006) Meteorol Atmos Phys, 94, pp. 129-143
  • Salio, P., Nicolini, M., Saulo, A.C., Chaco low-level jet events characterization during the austral summer season (2002) J Geophys Res, D, Atmospheres, 107, pp. ACL321-ACL3217
  • Campetella, C.M., Vera, C.S., The influence of the Andes mountains on the South American low-level flow (2002) Geophys Res Lett, 29, pp. 71-74
  • Marengo, J.A., Interdecadal variability and trends of rainfall across the Amazon basin (2004) Theor Appl Climatol, 78, pp. 79-96
  • Wang, H., Fu, R., Influence of cross-Andes flow on the South American low-level jet (2004) J Clim, 17, pp. 1247-1262
  • Marengo, J.A., Soares, W.R., Saulo, C., Nicolini, M., Climatology of the low-level jet east of the Andes as derived from the NCEP-NCAR reanalyses: Characteristics and temporal variability (2004) J Clim, 17, pp. 2261-2280
  • Moreno, P.I., Lowell, T.V., Jacobson, G.L., Jr., Denton, G.H., Abrupt vegetation and climate changes during the Last Glacial Maximum and last termination in the Chilean Lake District: A case study from Canal de la Puntilla (41°S) (1999) Geogr Ann, ser A, 81, pp. 285-311
  • Jbw, S., Lamy, F., Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr (2004) Quat Res, 62, pp. 301-309
  • Toggweiler, J.R., Russell, J.L., Carson, S.R., Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages (2006) Paleoceanography, 21
  • Dwj, T., Solomon, S., Interpretation of recent Southern Hemisphere climate change (2002) Science, 296, pp. 895-899
  • Saulo, C., Ruiz, J., García Skabar, Y., Synergism between the low-level jet and organized convection at its exit region (2007) Mon Weather Rev, 135, pp. 1310-1326
  • Goss, A.R., Kay, S.M., Mpodozis, C., Andean adakite-like high-Mg andesites on the northern margin of the Chilean-Pampean flat-slab (27-28.5° S) associated with frontal arc migration and fore-arc subduction erosion (2013) J Petrol, 54, pp. 2193-2234
  • Kay, S.M., Mpodozis, C., Gardeweg, M., (2013) Magma Sources and Tectonic Setting of Central Andean Andesites (25.5°-28° S) Related to Crustal Thickening, Forearc Subduction Erosion and Delamination, 385, pp. 303-334. , Special Publication (Geological Society of London, London)
  • Allmendinger, R.W., Judge, P.A., The Argentine Precordillera: A foreland thrust belt proximal to the subducted plate (2014) Geosphere, 10, pp. 1203-1218
  • Mercer, J.H., Sutter, J.F., Late Miocene-earliest Pliocene glaciation in southern Argentina: Implications for global ice-sheet history (1982) Palaeogeogr Palaeoclimatol Palaeoecol, 38, pp. 185-206


---------- APA ----------
Amidon, W.H., Fisher, G.B., Burbank, D.W., Ciccioli, P.L., Alonso, R.N., Gorin, A.L., Silverhart, P.H.,..., Christoffersen, M.S. (2017) . Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods. Proceedings of the National Academy of Sciences of the United States of America, 114(25), 6475-6479.
---------- CHICAGO ----------
Amidon, W.H., Fisher, G.B., Burbank, D.W., Ciccioli, P.L., Alonso, R.N., Gorin, A.L., et al. "Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods" . Proceedings of the National Academy of Sciences of the United States of America 114, no. 25 (2017) : 6475-6479.
---------- MLA ----------
Amidon, W.H., Fisher, G.B., Burbank, D.W., Ciccioli, P.L., Alonso, R.N., Gorin, A.L., et al. "Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods" . Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 25, 2017, pp. 6475-6479.
---------- VANCOUVER ----------
Amidon, W.H., Fisher, G.B., Burbank, D.W., Ciccioli, P.L., Alonso, R.N., Gorin, A.L., et al. Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods. Proc. Natl. Acad. Sci. U. S. A. 2017;114(25):6475-6479.