Artículo

Hugo, M.; Martínez, A.; Trujillo, M.; Estrada, D.; Mastrogiovanni, M.; Linares, E.; Augusto, O.; Issoglio, F.; Zeida, A.; Estrín, D.A.; Heijnen, H.F.G.; Piacenza, L.; Radi, R."Kinetics, subcellular localization, and contribution to parasite virulence of a Trypanosoma cruzi hybrid type A heme peroxidase (TcAPx-CcP)" (2017) Proceedings of the National Academy of Sciences of the United States of America. 114(8):E1326-E1335
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Trypanosoma cruzi ascorbate peroxidase is, by sequence analysis, a hybrid type A member of class I heme peroxidases [TcAPx-cytochrome c peroxidase (CcP)], suggesting both ascorbate (Asc) and cytochrome c (Cc) peroxidase activity. Here, we show that the enzyme reacts fast with H2O2 (k = 2.9 × 107 M-1·s-1) and catalytically decomposes H2O2 using Cc as the reducing substrate with higher efficiency than Asc (kcat/Km = 2.1 × 105 versus 3.5 × 104 M-1·s-1, respectively). Visible-absorption spectra of purified recombinant TcAPx-CcP after H2O2 reaction denote the formation of a compound I-like product, characteristic of the generation of a tryptophanyl radical-cation (Trp233•+). Mutation of Trp233 to phenylalanine (W233F) completely abolishes the Cc-dependent peroxidase activity. In addition to Trp233•+, a Cys222-derived radical was identified by electron paramagnetic resonance spin trapping, immunospin trapping, and MS analysis after equimolar H2O2 addition, supporting an alternative electron transfer (ET) pathway from the heme. Molecular dynamics studies revealed that ET between Trp233 and Cys222 is possible and likely to participate in the catalytic cycle. Recognizing the ability of TcAPx-CcP to use alternative reducing substrates, we searched for its subcellular localization in the infective parasite stages (intracellular amastigotes and extracellular trypomastigotes). TcAPx-CcP was found closely associated with mitochondrial membranes and, most interestingly, with the outer leaflet of the plasma membrane, suggesting a role at the host-parasite interface. TcAPx-CcP overexpressers were significantly more infective to macrophages and cardiomyocytes, as well as in the mouse model of Chagas disease, supporting the involvement of TcAPx-CcP in pathogen virulence as part of the parasite antioxidant armamentarium. © 2017, National Academy of Sciences. All rights reserved.

Registro:

Documento: Artículo
Título:Kinetics, subcellular localization, and contribution to parasite virulence of a Trypanosoma cruzi hybrid type A heme peroxidase (TcAPx-CcP)
Autor:Hugo, M.; Martínez, A.; Trujillo, M.; Estrada, D.; Mastrogiovanni, M.; Linares, E.; Augusto, O.; Issoglio, F.; Zeida, A.; Estrín, D.A.; Heijnen, H.F.G.; Piacenza, L.; Radi, R.
Filiación:Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, Montevideo, 11800, Uruguay
Center for Free Radical and Biomedical Research, Universidad de La República, Montevideo, 11800, Uruguay
Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, 05508-000, Brazil
Departamento de Química Inorgánica, Analítica y Química-Física, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Department of Clinical Chemistry and Hematology, Cell Microscopy Core, University Medical Center, Utrecht, 3584CX, Netherlands
Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany
Palabras clave:Heme peroxidase; Kinetics; Oxidants; Trypanosoma cruzi; Virulence; ascorbate peroxidase; cytochrome c peroxidase; heme; hydrogen peroxide; phenylalanine; cytochrome c; peroxidase; tryptophan; absorption spectroscopy; amastigote; animal cell; animal experiment; Article; cell kinetics; cell membrane; cellular distribution; controlled study; electron spin resonance; electron transport; enzyme activity; enzyme mechanism; enzyme substrate; host parasite interaction; mass spectrometry; mitochondrial membrane; molecular dynamics; mouse; nonhuman; parasite virulence; priority journal; protein expression; spin trapping; Trypanosoma cruzi; animal; Bagg albino mouse; C57BL mouse; Chagas disease; female; kinetics; male; metabolism; oxidation reduction reaction; parasite; parasitology; pathogenicity; physiology; procedures; site directed mutagenesis; Trypanosoma cruzi; virulence; Animals; Chagas Disease; Cytochrome c Group; Electron Spin Resonance Spectroscopy; Electron Transport; Female; Heme; Hydrogen Peroxide; Kinetics; Male; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mutagenesis, Site-Directed; Oxidation-Reduction; Parasites; Peroxidase; Phenylalanine; Trypanosoma cruzi; Tryptophan; Virulence
Año:2017
Volumen:114
Número:8
Página de inicio:E1326
Página de fin:E1335
DOI: http://dx.doi.org/10.1073/pnas.1618611114
Handle:http://hdl.handle.net/20.500.12110/paper_00278424_v114_n8_pE1326_Hugo
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
CAS:ascorbate peroxidase, 72906-87-7; cytochrome c peroxidase, 9029-53-2; heme, 14875-96-8; hydrogen peroxide, 7722-84-1; phenylalanine, 3617-44-5, 63-91-2; cytochrome c, 9007-43-6, 9064-84-0; peroxidase, 9003-99-0; tryptophan, 6912-86-3, 73-22-3; Cytochrome c Group; Heme; Hydrogen Peroxide; Peroxidase; Phenylalanine; Tryptophan
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v114_n8_pE1326_Hugo

Referencias:

  • Bonney, K.M., Chagas disease in the 21st century: A public health success or an emerging threat? (2014) Parasite, 21, p. 11
  • Bern, C., Kjos, S., Yabsley, M.J., Montgomery, S.P., Trypanosoma cruzi and Chagas' Disease in the United States (2011) Clin Microbiol Rev, 24 (4), pp. 655-681
  • Luquetti, A.O., Trypanosoma cruzi: Zymodemes associated with acute and chronic Chagas' disease in central Brazil (1986) Trans R Soc Trop Med Hyg, 80 (3), pp. 462-470
  • Piacenza, L., Peluffo, G., Alvarez, M.N., Martínez, A., Radi, R., Trypanosoma cruzi antioxidant enzymes as virulence factors in Chagas disease (2013) Antioxid Redox Signal, 19 (7), pp. 723-734
  • Piacenza, L., Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence (2009) Int J Parasitol, 39 (13), pp. 1455-1464
  • Piacenza, L., Alvarez, M.N., Peluffo, G., Radi, R., Fighting the oxidative assault: The Trypanosoma cruzi journey to infection (2009) Curr Opin Microbiol, 12 (4), pp. 415-421
  • Alvarez, M.N., Peluffo, G., Piacenza, L., Radi, R., Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: Consequences for oxidative killing and role of microbial peroxiredoxins in infectivity (2011) J Biol Chem, 286 (8), pp. 6627-6640
  • Carnieri, E.G., Moreno, S.N., Docampo, R., Trypanothione-dependent peroxide metabolism in Trypanosoma cruzi different stages (1993) Mol Biochem Parasitol, 61 (1), pp. 79-86
  • Boveris, A., Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi (1980) Biochem J, 188 (3), pp. 643-648
  • Comini, M.A., Flohé, L., Trypanothione-based redox metabolism of trypanosomatids (2013) Trypanosomatid Diseases: Molecular Routes to Drug Discovery, pp. 167-199. , eds Jäger T, Kock O, Flohé L (Wiley-VCH, Weinheim, Germany)
  • Wilkinson, S.R., Temperton, N.J., Mondragon, A., Kelly, J.M., Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi (2000) J Biol Chem, 275 (11), pp. 8220-8225
  • Trujillo, M., Trypanosoma brucei and Trypanosoma cruzi tryparedoxin peroxidases catalytically detoxify peroxynitrite via oxidation of fast reacting thiols (2004) J Biol Chem, 279 (33), pp. 34175-34182
  • Piacenza, L., Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite (2008) Biochem J, 410 (2), pp. 359-368
  • Wilkinson, S.R., TcGPXII, a glutathione-dependent Trypanosoma cruzi peroxidase with substrate specificity restricted to fatty acid and phospholipid hydroperoxides, is localized to the endoplasmic reticulum (2002) Biochem J, 364, pp. 787-794
  • Wilkinson, S.R., Obado, S.O., Mauricio, I.L., Kelly, J.M., Trypanosoma cruzi expresses a plant-like ascorbate-dependent hemoperoxidase localized to the endoplasmic reticulum (2002) Proc Natl Acad Sci USA, 99 (21), pp. 13453-13458
  • Atwood, J.A., 3rd, The Trypanosoma cruzi proteome (2005) Science, 309 (5733), pp. 473-476
  • Clark, D., Albrecht, M., Arévalo, J., Ascorbate variations and dehydroascorbate reductase activity in Trypanosoma cruzi epimastigotes and trypomastigotes (1994) Mol Biochem Parasitol, 66 (1), pp. 143-145
  • Adak, S., Datta, A.K., Leishmania major encodes an unusual peroxidase that is a close homologue of plant ascorbate peroxidase: A novel role of the transmembrane domain (2005) Biochem J, 390, pp. 465-474
  • Lad, L., Mewies, M., Raven, E.L., Substrate binding and catalytic mechanism in ascorbate peroxidase: Evidence for two ascorbate binding sites (2002) Biochemistry, 41 (46), pp. 13774-13781
  • Taylor, M.C., Lewis, M.D., Fortes Francisco, A., Wilkinson, S.R., Kelly, J.M., The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence (2015) PLoS Negl Trop Dis, 9 (4)
  • Zacks, M.A., Wen, J.J., Vyatkina, G., Bhatia, V., Garg, N., An overview of chagasic cardiomyopathy: Pathogenic importance of oxidative stress (2005) An Acad Bras Cienc, 77 (4), pp. 695-715
  • Zámocký, M., Furtmüller, P.G., Obinger, C., Evolution of structure and function of Class I peroxidases (2010) Arch Biochem Biophys, 500 (1), pp. 45-57
  • Zámocký, M., Gasselhuber, B., Furtmüller, P.G., Obinger, C., Turning points in the evolution of peroxidase-catalase superfamily: Molecular phylogeny of hybrid heme peroxidases (2014) Cell Mol Life Sci, 71 (23), pp. 4681-4696
  • Logan, F.J., Taylor, M.C., Wilkinson, S.R., Kaur, H., Kelly, J.M., The terminal step in vitamin C biosynthesis in Trypanosoma cruzi is mediated by a FMN-dependent galactonolactone oxidase (2007) Biochem J, 407 (3), pp. 419-426
  • Jasion, V.S., Polanco, J.A., Meharenna, Y.T., Li, H., Poulos, T.L., Crystal structure of Leishmania major peroxidase and characterization of the compound i tryptophan radical (2011) J Biol Chem, 286 (28), pp. 24608-24615
  • Yadav, R.K., Dolai, S., Pal, S., Adak, S., Role of tryptophan-208 residue in cytochrome c oxidation by ascorbate peroxidase from Leishmania major-kinetic studies on Trp208Phe mutant and wild type enzyme (2008) Biochim Biophys Acta, 1784 (5), pp. 863-871
  • Pal, S., Dolai, S., Yadav, R.K., Adak, S., Ascorbate peroxidase from Leishmania major controls the virulence of infective stage of promastigotes by regulating oxidative stress (2010) PLoS One, 5 (6)
  • Patterson, W.R., Poulos, T.L., Goodin, D.B., Identification of a porphyrin pi cation radical in ascorbate peroxidase compound I (1995) Biochemistry, 34 (13), pp. 4342-4345
  • Erman, J.E., Vitello, L.B., Mauro, J.M., Kraut, J., Detection of an oxyferryl porphyrin pi-cation-radical intermediate in the reaction between hydrogen peroxide and a mutant yeast cytochrome c peroxidase. Evidence for tryptophan-191 involvement in the radical site of compound I (1989) Biochemistry, 28 (20), pp. 7992-7995
  • Thomson, L., Trujillo, M., Telleri, R., Radi, R., Kinetics of cytochrome c2+ oxidation by peroxynitrite: Implications for superoxide measurements in nitric oxide-producing biological systems (1995) Arch Biochem Biophys, 319 (2), pp. 491-497
  • Trujillo, M., Pre-steady state kinetic characterization of human peroxiredoxin 5: Taking advantage of Trp84 fluorescence increase upon oxidation (2007) Arch Biochem Biophys, 467 (1), pp. 95-106
  • Dunford, H.B., (1999) Heme Peroxidases, , Wiley-VCH, New York
  • Hiner, A.N., Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide (2000) Biochem J, 348, pp. 321-328
  • Yadav, R.S., Mishra, P., Pandey, A.C., Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method (2008) Ultrason Sonochem, 15 (5), pp. 863-868
  • Detweiler, C.D., Immunological identification of the heart myoglobin radical formed by hydrogen peroxide (2002) Free Radic Biol Med, 33 (3), pp. 364-369
  • Davies, M.J., Gilbert, B.C., Haywood, R.M., Radical-induced damage to bovine serum albumin: Role of the cysteine residue (1993) Free Radic Res Commun, 18 (6), pp. 353-367
  • Gatti, R.M., Radi, R., Augusto, O., Peroxynitrite-mediated oxidation of albumin to the protein-thiyl free radical (1994) FEBS Lett, 348 (3), pp. 287-290
  • Slot, J.W., Geuze, H.J., Cryosectioning and immunolabeling (2007) Nat Protoc, 2 (10), pp. 2480-2491
  • Gupta, S., Trypanosoma cruzi infection disturbs mitochondrial membrane potential and ROS production rate in cardiomyocytes (2009) Free Radic Biol Med, 47 (10), pp. 1414-1421
  • Efimov, I., The redox properties of ascorbate peroxidase (2007) Biochemistry, 46 (27), pp. 8017-8023
  • Prütz, W.A., Butler, J., Land, E.J., Swallow, A.J., The role of sulphur peptide functions in free radical transfer: A pulse radiolysis study (1989) Int J Radiat Biol, 55 (4), pp. 539-556
  • Dolai, S., Yadav, R.K., Pal, S., Adak, S., Overexpression of mitochondrial Leishmania major ascorbate peroxidase enhances tolerance to oxidative stress-induced programmed cell death and protein damage (2009) Eukaryot Cell, 8 (11), pp. 1721-1731
  • Levine, M., Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance (1996) Proc Natl Acad Sci USA, 93 (8), pp. 3704-3709
  • Radi, R., Turrens, J.F., Freeman, B.A., Cytochrome c-catalyzed membrane lipid peroxidation by hydrogen peroxide (1991) Arch Biochem Biophys, 288 (1), pp. 118-125
  • Tomás, A.M., Kelly, J.M., Stage-regulated expression of cruzipain, the major cysteine protease of Trypanosoma cruzi is independent of the level of RNA1 (1996) Mol Biochem Parasitol, 76 (1-2), pp. 91-103
  • Aslund, L., The C-terminal extension of the major cysteine proteinase (cruzipain) from Trypanosoma cruzi (1991) Mol Biochem Parasitol, 45 (2), pp. 345-347
  • Alvarez, M.N., Piacenza, L., Irigoín, F., Peluffo, G., Radi, R., Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi (2004) Arch Biochem Biophys, 432 (2), pp. 222-232
  • Zago, M.P., TcI Isolates of Trypanosoma cruzi exploit the antioxidant network for enhanced intracellular survival in macrophages and virulence in mice (2016) Infect Immun, 84 (6), pp. 1842-1856
  • Piñeyro, M.D., Arcari, T., Robello, C., Radi, R., Trujillo, M., Tryparedoxin peroxidases from Trypanosoma cruzi: High efficiency in the catalytic elimination of hydrogen peroxide and peroxynitrite (2011) Arch Biochem Biophys, 507 (2), pp. 287-295
  • Ellman, G.L., Tissue sulfhydryl groups (1959) Arch Biochem Biophys, 82 (1), pp. 70-77
  • Biasini, M., SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information (2014) Nucleic Acids Res, 42 (WEB SERVER ISSUE), pp. W252-W258
  • Dolinsky, T.J., PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations (2007) Nucleic Acids Res, 35 (WEB SERVER ISSUE), pp. W522-W525
  • Essman, U.P.L., Berkowitz, M.L., A smooth particle mesh Ewald method (1995) J Chem Phys, 103 (19), pp. 8577-8593
  • Ryckaert, J.P.C., Ciccotti, G., Berendsen, H.J.C., Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes (1997) J Comput Phys, 23, pp. 327-341
  • Capece, L., Lewis-Ballester, A., Marti, M.A., Estrin, D.A., Yeh, S.R., Molecular basis for the substrate stereoselectivity in tryptophan dioxygenase (2011) Biochemistry, 50 (50), pp. 10910-10918
  • Beratan, D.N., Betts, J.N., Onuchic, J.N., Protein electron transfer rates set by the bridging secondary and tertiary structure (1991) Science, 252 (5010), pp. 1285-1288
  • Beratan, D.N., Onuchic, J.N., Winkler, J.R., Gray, H.B., Electron-tunneling pathways in proteins (1992) Science, 258 (5089), pp. 1740-1741
  • Petruk, A.A., Molecular basis of intramolecular electron transfer in proteins during radical-mediated oxidations: Computer simulation studies in model tyrosine-cysteine peptides in solution (2012) Arch Biochem Biophys, 525 (1), pp. 82-91
  • Alvarez-Paggi, D., Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes (2010) J Am Chem Soc, 132 (16), pp. 5769-5778
  • Ly, H.K., Thermal fluctuations determine the electron-transfer rates of cytochrome c in electrostatic and covalent complexes (2010) ChemPhysChem, 11 (6), pp. 1225-1235
  • Ferreiro, D.N., Boechi, L., Estrin, D.A., Martí, M.A., The key role of water in the dioxygenase function of Escherichia coli flavohemoglobin (2013) J Inorg Biochem, 119, pp. 75-84
  • Martinez, A., Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: Disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer (2014) J Biol Chem, 289 (18), pp. 12760-12778
  • Marcus, R.J., Chemical conversion of solar energy (1956) Science, 123 (3193), pp. 399-405
  • Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) J Mol Graph, 14 (1), pp. 33-38
  • Piacenza, L., Peluffo, G., Radi, R., L-arginine-dependent suppression of apoptosis in Trypanosoma cruzi: Contribution of the nitric oxide and polyamine pathways (2001) Proc Natl Acad Sci USA, 98 (13), pp. 7301-7306
  • Slot, J.W., Geuze, H.J., Gigengack, S., Lienhard, G.E., James, D.E., Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat (1991) J Cell Biol, 113 (1), pp. 123-135
  • Bryan, M.A., Guyach, S.E., Norris, K.A., Specific humoral immunity versus polyclonal B cell activation in Trypanosoma cruzi infection of susceptible and resistant mice (2010) PLoS Negl Trop Dis, 4 (7), p. e733

Citas:

---------- APA ----------
Hugo, M., Martínez, A., Trujillo, M., Estrada, D., Mastrogiovanni, M., Linares, E., Augusto, O.,..., Radi, R. (2017) . Kinetics, subcellular localization, and contribution to parasite virulence of a Trypanosoma cruzi hybrid type A heme peroxidase (TcAPx-CcP). Proceedings of the National Academy of Sciences of the United States of America, 114(8), E1326-E1335.
http://dx.doi.org/10.1073/pnas.1618611114
---------- CHICAGO ----------
Hugo, M., Martínez, A., Trujillo, M., Estrada, D., Mastrogiovanni, M., Linares, E., et al. "Kinetics, subcellular localization, and contribution to parasite virulence of a Trypanosoma cruzi hybrid type A heme peroxidase (TcAPx-CcP)" . Proceedings of the National Academy of Sciences of the United States of America 114, no. 8 (2017) : E1326-E1335.
http://dx.doi.org/10.1073/pnas.1618611114
---------- MLA ----------
Hugo, M., Martínez, A., Trujillo, M., Estrada, D., Mastrogiovanni, M., Linares, E., et al. "Kinetics, subcellular localization, and contribution to parasite virulence of a Trypanosoma cruzi hybrid type A heme peroxidase (TcAPx-CcP)" . Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 8, 2017, pp. E1326-E1335.
http://dx.doi.org/10.1073/pnas.1618611114
---------- VANCOUVER ----------
Hugo, M., Martínez, A., Trujillo, M., Estrada, D., Mastrogiovanni, M., Linares, E., et al. Kinetics, subcellular localization, and contribution to parasite virulence of a Trypanosoma cruzi hybrid type A heme peroxidase (TcAPx-CcP). Proc. Natl. Acad. Sci. U. S. A. 2017;114(8):E1326-E1335.
http://dx.doi.org/10.1073/pnas.1618611114