Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Non-iridescent coloration in birds’ plumage is associated with the quasi-ordered nanostructures of short-range order present within the feather barbs. Even though this type of color does not change with the observation direction, a few bird species which exhibit the so called non-iridescent structurally colored feathers, present significant hue variations as the relative angle between incidence and detection directions is varied. Among these, the Swallow Tanager constitutes an excellent system to investigate this phenomenon as its hue changes remarkably from greens to blues as the angle between the illumination and observation directions increases, and independently of feather orientation. In this paper we elucidate the origin of the striking color change of the Swallow Tanager plumage by computing the reflectance spectra of the feathers’ microstructure. We show that the color observed under different illumination-detection conditions can be predicted quite accurately by applying averaging techniques and by considering the air-spheres microstructure of their feathers’ barbs as the main responsible for the observed color change. This work opens up new possibilities for the design of devices with special color characteristics. © 2019 Elsevier GmbH

Registro:

Documento: Artículo
Título:How the observed color of the Swallow Tanager (Tersina viridis) changes with viewing geometry
Autor:Skigin, D.C.; Inchaussandague, M.E.; D'Ambrosio, C.; Barreira, A.; Tubaro, P.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Grupo de Electromagnetismo Aplicado, Buenos Aires, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
División de Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” MACN-CONICET, Av. Ángel Gallardo 470 (C1405DJR), Buenos Aires, Argentina
Palabras clave:Birds plumage coloration; Natural photonic crystals; Structural color; Birds; Colorimetry; Microstructure; Averaging technique; Color characteristics; Natural photonic crystals; Ordered nanostructures; Plumage coloration; Reflectance spectrum; Short range ordering; Structural color; Color
Año:2019
Volumen:182
Página de inicio:639
Página de fin:646
DOI: http://dx.doi.org/10.1016/j.ijleo.2019.01.037
Título revista:Optik
Título revista abreviado:Optik
ISSN:00304026
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_00304026_v182_n_p639_Skigin

Referencias:

  • Srinivasarao, M., Nano-optics in the biological world: beetles, butterflies, birds, and moths (1999) Chem. Rev., 99, pp. 1935-1961
  • Parker, A., 515 million years of structural colour (2000) J. Opt. A Pure Appl. Opt., 2, pp. R15-R28
  • Vukusic, P., Sambles, J.R., Photonic structures in biology (2003) Nature, 424, pp. 852-855
  • Kinoshita, S., Structural Colors in the Realm of Nature (2008), World Scientific Publishing Co. Singapore; Berthier, S., Iridescences, the Physical Colours of Insects (2007), Springer Science+Business Media, LLC France; Prum, R., Torres, R., Williamson, S., Dyck, J., Coherent light scattering by blue feather barbs (1998) Nature, 396, pp. 28-29
  • Saranathan, V., Forster, J., Noh, H., Liew, S., Mochrie, S., Cao, H., Dufresne, E., Prum, R., Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species (2012) J. R. Soc. Interface, 9, pp. 2563-2580
  • Prum, R., Torres, R., Williamson, S., Dyck, J., Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs (1999) Proc. R. Soc. Lond. B, 266, pp. 13-22
  • Prum, R.O., Anatomy, physics and evolution of structural colors (2006) Bird Coloration, Volume I: Mechanisms and Measurements, pp. 295-353. , G. Hill K.J. McGraw Harvard University Press Cambridge, MA, USA
  • Igic, B., D'Alba, L., Shawkey, M., Manakins can produce iridescent and bright feather colours without melanosomes (2016) J. Exp. Biol., 219, pp. 1851-1859
  • Yoshioka, S., Kinoshita, S., Effect of macroscopic structure in iridescent color of the peacock feathers (2002) Forma, 17, pp. 169-181
  • Li, Y., Lu, Z., Yin, H., Yu, X., Liu, X., Zi, J., Structural origin of the brown color of barbules in male peacock tail feathers (2005) Phys. Rev. E, 72, p. 010902. , (R)
  • Yin, H., Shi, L., Sha, J., Li, Y., Qin, Y., Dong, B., Meyer, S., Zi, J., Iridescence in the neck feathers of domestic pigeons (2006) Phys. Rev. E, 74, p. 051916
  • Stavenga, D.G., Leertouwer, H.L., Marshall, N.J., Osorio, D., Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules (2011) Proc. R. Soc. Lond. B, 278, pp. 2098-2104
  • Xiao, M., Dhinojwala, A., Shawkey, M., Nanostructural basis of rainbow-like iridescence in common bronzewing Phaps chalcoptera feathers (2014) Opt. Express, 22, pp. 14625-14636
  • Stavenga, D.G., Leertouwer, H.L., Osorio, D.C., Wilts, B., High refractive index of melanin in shiny occipital feathers of a bird of paradise (2015) Light: Sci. Appl., 4, p. e243
  • Noh, H., Liew, S.F., Saranathan, V., Mochrie, S.G.J., Prum, R.O., Dufresne, E.R., Hui Cao, How noniridescent colors are generated by quasi-ordered structures of birds feathers (2010) Adv. Mater., 22, pp. 2871-2880
  • Prum, R.O., Dufresne, E.R., Quinn, T., Waters, K., Development of colour-producing β-keratin nanostructures in avian feather barbs (2009) J. R. Soc. Interface, 6, pp. S253-S265
  • Noh, H., Liew, S.F., Saranathan, V., Prum, R.O., Mochrie, S.G.J., Dufresne, E.R., Cao, H., Double scattering of light from biophotonic nanostructures with short-range order (2010) Opt. Express, 18, pp. 11942-11948
  • Prum, R.O., Torres, R., Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays (2003) J. Exp. Biol., 206, pp. 2409-2429
  • Prum, R.O., Anatomy, physics and evolution of structural colors (2006) Bird Coloration, Volume 1: Mechanisms and Measurements, pp. 295-353. , G. Hill K.J. McGraw Harvard University Press Cambridge, MA, USA
  • Osorio, D., Ham, A.D., Spectral reflectance and directional properties of structural coloration in bird plumage (2002) J. Exp. Biol., 205, pp. 2017-2027
  • Barreira, A., García, N., Lougheed, S., Tubaro, P., Viewing geometry affects sexual dichromatism and conspicuousness of noniridescent plumage of Swallow Tanagers (Tersina viridis) (2016) Auk, 133, pp. 530-543
  • Isler, M.L., Isler, P.R., The Tanagers: Natural History, Distribution, and Identification (1999), Smithsonian Institution Press Washington, DC; Barreira, A., García, G., Lijtmaer, D., Lougheed, S., Tubaro, P., Blue males and green females: sexual dichromatism in the Blue Dacnis (Dacnis cayana) and the Swallow Tanager (Tersina viridis) (2008) Ornitol. Neotrop., 19, pp. 441-450
  • D'Ambrosio, C., Inchaussandague, M., Skigin, D., Barreira, A., Tubaro, P., Structural colour in Tersina viridis (2017) Opt. Pura Appl., 50, pp. 279-288
  • D'Ambrosio, C., Skigin, D., Inchaussandague, M., Barreira, A., Tubaro, P., Structural color in the Swallow Tanager (Tersina viridis): using the Korringa-Kohn-Rostoker method to simulate disorder in natural photonic crystals (2018) Phys. Rev. E, 98, p. 032403
  • Stefanou, N., Yannopapas, V., Modinos, A., Heterostructures of photonic crystals: frequency bands and transmission coefficients (1998) Comput. Phys. Commun., 113, pp. 49-77
  • Yannopapas, V., Modinos, A., Stefanou, N., Optical properties of metallodielectric photonic crystals (1999) Phys. Rev. B, 60, p. 5359
  • Stefanou, N., Yannopapas, V., Modinos, A., Multem 2: a new version of the program for transmission and bandstructure calculations of photonic crystals (2000) Comput. Phys. Commun., 132, pp. 189-196
  • Barreira, A., Evolución de los patrones de coloración del plumaje en fruteros neotropicales, PhD Thesis (2011), UBA; Dorado, L.A., Depine, R.A., Modeling of disorder effects and optical extinction in three dimensional photonic crystals (2009) Phys. Rev. B, 79, p. 045124
  • Gralak, B., Tayeb, G., Enoch, S., Morpho butterflies wings color modeled with lamellar grating theory (2001) Opt. Express, 9, pp. 567-578
  • Lozano, R., El Color y su Medición (Américalee Ed. (1978), (in spanish); Schaefer, E., Contribution to the life history of the Swallow-Tanager (1953) Auk, 70, pp. 403-460

Citas:

---------- APA ----------
Skigin, D.C., Inchaussandague, M.E., D'Ambrosio, C., Barreira, A. & Tubaro, P. (2019) . How the observed color of the Swallow Tanager (Tersina viridis) changes with viewing geometry. Optik, 182, 639-646.
http://dx.doi.org/10.1016/j.ijleo.2019.01.037
---------- CHICAGO ----------
Skigin, D.C., Inchaussandague, M.E., D'Ambrosio, C., Barreira, A., Tubaro, P. "How the observed color of the Swallow Tanager (Tersina viridis) changes with viewing geometry" . Optik 182 (2019) : 639-646.
http://dx.doi.org/10.1016/j.ijleo.2019.01.037
---------- MLA ----------
Skigin, D.C., Inchaussandague, M.E., D'Ambrosio, C., Barreira, A., Tubaro, P. "How the observed color of the Swallow Tanager (Tersina viridis) changes with viewing geometry" . Optik, vol. 182, 2019, pp. 639-646.
http://dx.doi.org/10.1016/j.ijleo.2019.01.037
---------- VANCOUVER ----------
Skigin, D.C., Inchaussandague, M.E., D'Ambrosio, C., Barreira, A., Tubaro, P. How the observed color of the Swallow Tanager (Tersina viridis) changes with viewing geometry. Optik. 2019;182:639-646.
http://dx.doi.org/10.1016/j.ijleo.2019.01.037