Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, we use the effect of herbicides that affect the photosynthetic chain at defined sites in the photosynthetic reaction steps to derive information about the fluorescence emission of photosystems. The interpretation of spectral data from treated and control plants, after correction for light reabsorption processes, allowed us to elucidate current controversies in the subject. Results were compatible with the fact that a nonnegligible Photosystem I contribution to chlorophyll fluorescence in plants at room temperature does exist. In another aspect, variable and nonvariable chlorophyll fluorescence were comparatively tested as bioindicators for detection of both herbicides in aquatic environment. Both methodologies were appropriate tools for this purpose. However, they showed better sensitivity for pollutants disconnecting Photosystem II-Photosystem I by blocking the electron transport between them as Atrazine. Specifically, changes in the (experimental and corrected by light reabsorption) red to far red fluorescence ratio, in the maximum photochemical quantum yield and in the quantum efficiency of Photosytem II for increasing concentrations of herbicides have been measured and compared. The most sensitive bioindicator for both herbicides was the quantum efficiency of Photosystem II. In this work we use the effect of herbicides at defined sites in the photosynthetic chain to derive information about the fluorescence emission of photosystems. Additionally, chlorophyll fluorescence was tested as a bioindicator for detection of both herbicides in aquatic environment. © 2013 The American Society of Photobiology.

Registro:

Documento: Artículo
Título:Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited - Implications in photosystems emission and ecotoxicity assessment
Autor:Iriel, A.; Novo, J.M.; Cordon, G.B.; Lagorio, M.G.
Filiación:Centro de Estudios Transdisciplinarios Del Agua, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
INQUIMAE/ Dpto. de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, Argentina
LART-IFEVA/ Dpto. de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
Año:2014
Volumen:90
Número:1
Página de inicio:107
Página de fin:112
DOI: http://dx.doi.org/10.1111/php.12142
Título revista:Photochemistry and Photobiology
Título revista abreviado:Photochem. Photobiol.
ISSN:00318655
CODEN:PHCBA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00318655_v90_n1_p107_Iriel

Referencias:

  • Franck, F., Juneau, P., Popovic, R., Resolution of the photosystem i and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature (2002) Biochim. Biophys. Acta, 1556, pp. 239-246
  • Govindjee, Sixty-three years since Kautsky: Chlorophyll a fluorescence (1995) Aust. J. Plant Physiol, 22, pp. 131-160
  • Pfündel, E., Estimating the contribution of the photosystem i to the total leaf chlorophyll fluorescence (1998) Photosynth. Res., 56, pp. 185-195
  • Agati, G., Cerovic, Z., Moya, I., The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum: The role of the photosystem i contribution to the 735 nm fluorescence band (2000) Photochem. Photobiol., 72, pp. 75-84
  • Buschman, C., Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves (2007) Photosynth. Res., 92, pp. 261-271
  • Eullaffroy, P., Vernet, G., The F684/F735 chlorophyll fluorescence ratio: A potential tool for rapid detection and determination of herbicide phytotoxicity in algae (2003) Water Res., 37, pp. 1983-1990
  • Palombi, L., Cecchi, G., Lognoli, D., Raimondi, V., Toci, G., Agati, G., A retrieval algorithm to evaluate the photosystem i and photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures (2011) Photosynth. Res., 108, pp. 225-239
  • Maxwell, K., Johnson, G., Chlorophyll fluorescence-a practical guide (2000) J. Exp. Bot., 51, pp. 659-668
  • Lagorio, M.G., Chlorophyll fluorescence emission spectra in photosynthetic organisms (2011) Chlorophyll: Structure, Production and Medicinal Uses, pp. 115-150. , In (Edited by H. Le and E. Salcedo), Nova Science Publishers, New York
  • Gitelson, A., Buschmann, C., Lichtenthaler, H., Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements (1998) J. Plant Physiol., 152, pp. 283-296
  • Peterson, R., Oja, V., Laisk, A., Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis (2001) Photosynth. Res., 70, pp. 185-196
  • Roelofs, T., Lee, H., Holzwarth, A., A new approach to the characterization of the primary processes in photosystem II alpha-and-beta-units (1992) Biophys. J., 61, pp. 1147-1163
  • Pedrós, R., Moya, I., Goulas, Y., Yacquemoud, S., Chlorophyll fluorescence emission spectrum inside a leaf (2008) Photochem. Photobiol. Sci., 7, pp. 498-502
  • Cordon, G., Lagorio, M.G., Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models (2006) Photochem. Photobiol. Sci., 5, pp. 735-740
  • Ramos, M.E., Lagorio, M.G., True fluorescence spectra of leaves (2004) Photochem. Photobiol. Sci., 3, pp. 1063-1066
  • Gojmerac, T., Ostojic, Z., Paukovic, D., Pleadin, J., Žuric, M., Evaluation of surface water pollution with atrazine, an endocrine disruptor chemical, in agricultural areas of Turopolje. Croatia (2006) Bull. Environ. Contam. Toxicol, 76, pp. 490-496
  • Wu, M., Quirindongo, M., Sass, J., Wetzler, A., Still poisoning the well (2010) Atrazine Continues to Contaminate Surface Water and Drinking Water in the United States, , Report of the Natural Resources Defense Council
  • Hayes, L.A., Beasley, V., De Solla, S.R., Iguchi, T., Ingraham, H., Kestemont, P., Kniewald, J., Willingham, E., Demasculinization and feminization of male gonads by atrazine: Consistent effects across vertebrate classes (2011) J. Steroid Biochem. Mol. Biol, 127, pp. 64-73
  • Maya, F., Estela, J.M., Cerdà, V., Improved spectrophotometric determination of paraquat in drinking waters exploiting a multisyringe liquid core waveguide system (2011) Talanta, 85, pp. 588-595
  • Conrad, R., Buchel, C., Wilhelm, C., Arsalane, W., Berkaloff, C., Duval, J.C., Changes in yield of in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring (1993) J. Appl. Phycol., 5, pp. 505-516
  • Ralph, P.J., Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence (2000) Aquat. Bot., 66, pp. 141-152
  • Fan, D.Y., Jia, H., Barber, J., Chow, W.S., Novel effects of methyl viologen on photosystem II function in spinach leaves (2009) Eur. Biophys. J., 39, pp. 191-199
  • Tomlin, C., (2000) The Pesticide Manual, , 12th edn. British Crop Protection Council, Farnham
  • Lichtenthaler, H., Buschmann, C., Knapp, M., How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer (2005) Photosynthetica, 43, pp. 379-393
  • Preuss, M., Hall, E.A.H., Mediated herbicide inhibition in a pet biosensor (1995) Anal. Chem., 67, pp. 1940-1949
  • Hess, F., Light-dependent herbicides: An overview (2000) Weed Sci., 48, pp. 160-170
  • Chueca, M.C., Ortega Nieblas, M., Villarroya, M., García Baudín, J.M., Inducción de fluorescencia en pino. Respuesta de Pinus halepensis Miller, P. Nigra Arnold y P. pinaster Aiton a los herbicidas hexazinona y simazina (2001) Invest. Agr: Sist. Recur. For., 10, pp. 367-374
  • Lin, Z., Liu, N., Lin, G., Pan, X., Peng, C., Stress-induced alteration of chlorophyll fluorescence polarization and spectrum in leaves of Alocasia macrorrhiza (2007) J. Fluoresc., 17, pp. 663-669
  • Wong, P., Efects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauda Berb 614 (2000) Chemosphere, 41, pp. 177-182

Citas:

---------- APA ----------
Iriel, A., Novo, J.M., Cordon, G.B. & Lagorio, M.G. (2014) . Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited - Implications in photosystems emission and ecotoxicity assessment. Photochemistry and Photobiology, 90(1), 107-112.
http://dx.doi.org/10.1111/php.12142
---------- CHICAGO ----------
Iriel, A., Novo, J.M., Cordon, G.B., Lagorio, M.G. "Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited - Implications in photosystems emission and ecotoxicity assessment" . Photochemistry and Photobiology 90, no. 1 (2014) : 107-112.
http://dx.doi.org/10.1111/php.12142
---------- MLA ----------
Iriel, A., Novo, J.M., Cordon, G.B., Lagorio, M.G. "Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited - Implications in photosystems emission and ecotoxicity assessment" . Photochemistry and Photobiology, vol. 90, no. 1, 2014, pp. 107-112.
http://dx.doi.org/10.1111/php.12142
---------- VANCOUVER ----------
Iriel, A., Novo, J.M., Cordon, G.B., Lagorio, M.G. Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited - Implications in photosystems emission and ecotoxicity assessment. Photochem. Photobiol. 2014;90(1):107-112.
http://dx.doi.org/10.1111/php.12142