Artículo

Balzarotti, F.; Eilers, Y.; Gwosch, K.C.; Gynnå, A.H.; Westphal, V.; Stefani, F.D.; Elf, J.; Hell, S.W. "Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes" (2017) Science. 355(6325):606-612
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required as compared to popular centroid localization. In superresolution microscopy, MINFLUX attained ∼1-nanometer precision, resolving molecules only 6 nanometers apart. MINFLUX tracking of single fluorescent proteins increased the temporal resolution and the number of localizations per trace by a factor of 100, as demonstrated with diffusing 30S ribosomal subunits in living Escherichia coli. As conceptual limits have not been reached, we expect this localization modality to break new ground for observing the dynamics, distribution, and structure of macromolecules in living cells and beyond. © 2017, American Association for the Advancement of Science. All rights reserved.

Registro:

Documento: Artículo
Título:Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
Autor:Balzarotti, F.; Eilers, Y.; Gwosch, K.C.; Gynnå, A.H.; Westphal, V.; Stefani, F.D.; Elf, J.; Hell, S.W.
Filiación:Department of NanoBiophotonics, Max Planck Institute For Biophysical Chemistry, Göttingen, Germany
Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
Optical Nanoscopy Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
Palabras clave:fluorescent dye; protein; DNA; photoprotein; cell organelle; cells and cell components; coliform bacterium; equipment; fluorescence; image resolution; light intensity; precision; protein; Article; Escherichia coli; excitation; fluorescence; fluorescence microscopy; light; macromolecule; molecular dynamics; nanoimaging; photon; priority journal; ribosome subunit; simulation; chemistry; fluorescence imaging; nanotechnology; photon; procedures; single molecule imaging; small ribosomal subunit; Escherichia coli; DNA; Escherichia coli; Luminescent Proteins; Microscopy, Fluorescence; Nanotechnology; Optical Imaging; Photons; Ribosome Subunits, Small, Bacterial; Single Molecule Imaging
Año:2017
Volumen:355
Número:6325
Página de inicio:606
Página de fin:612
DOI: http://dx.doi.org/10.1126/science.aak9913
Título revista:Science
Título revista abreviado:Sci.
ISSN:00368075
CODEN:SCIEA
CAS:protein, 67254-75-5; DNA, 9007-49-2; DNA; Luminescent Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00368075_v355_n6325_p606_Balzarotti

Referencias:

  • Hell, S.W., Wichmann, J., (1994) Opt. Lett., 19, pp. 780-782
  • Klar, T.A., Jakobs, S., Dyba, M., Egner, A., Hell, S.W., (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 8206-8210
  • Betzig, E., (2006) Science, 313, pp. 1642-1645
  • Rust, M.J., Bates, M., Zhuang, X., (2006) Nat. Methods, 3, pp. 793-796
  • Hess, S.T., Girirajan, T.P.K., Mason, M.D., (2006) Biophys. J., 91, pp. 4258-4272
  • Hell, S.W., (2007) Science, 316, pp. 1153-1158
  • Deschout, H., (2014) Nat. Methods, 11, pp. 253-266
  • Heisenberg, W., (1930) The Physical Principles of the Quantum Theory, , Univ. of Chicago Press, Chicago
  • Bobroff, N., (1986) Rev. Sci. Instrum., 57, pp. 1152-1157
  • Thompson, R.E., Larson, D.R., Webb, W.W., (2002) Biophys. J., 82, pp. 2775-2783
  • Mortensen, K.I., Churchman, L.S., Spudich, J.A., Flyvbjerg, H., (2010) Nat. Methods, 7, pp. 377-381
  • Engelhardt, J., (2011) Nano Lett., 11, pp. 209-213
  • Lew, M.D., Backlund, M.P., Moerner, W.E., (2013) Nano Lett, 13, pp. 3967-3972
  • Yildiz, A., (2003) Science, 300, pp. 2061-2065
  • Elf, J., Li, G.-W., Xie, X.S., (2007) Science, 316, pp. 1191-1194
  • Kusumi, A., Tsunoyama, T.A., Hirosawa, K.M., Kasai, R.S., Fujiwara, T.K., (2014) Nat. Chem. Biol., 10, pp. 524-532
  • Sahl, S.J., Leutenegger, M., Hilbert, M., Hell, S.W., Eggeling, C., (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 6829-6834
  • Vogelsang, J., (2008) Angew. Chem. Int. Ed. Engl., 47, pp. 5465-5469
  • Zheng, Q., (2014) Chem. Soc. Rev., 43, pp. 1044-1056
  • Weisenburger, S., (2014) ChemPhysChem, 15, pp. 763-770
  • Sharonov, A., Hochstrasser, R.M., (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 18911-18916
  • Dai, M., Jungmann, R., Yin, P., (2016) Nat. Nanotechnol., 11, pp. 798-807
  • Pellegrotti, J.V., (2014) Nano Lett, 14, pp. 2831-2836
  • Sanamrad, A., (2014) Proc. Natl. Acad. Sci. U.S.A, 111, pp. 11413-11418
  • Hell, S.W., (2015) Angew. Chem. Int. Ed. Engl., 54, pp. 8054-8066
  • Hell, S.W., Method of and apparatus for tracking a particle, particularly a single molecule, in a sample (2013), Patent application WO, published 23 May; Hell, S.W., High-resolution fluorescence microscopy with a structured excitation beam (2015), Patent application WO, published 2 July; Schmied, J.J., (2012) Nat. Methods, 9, pp. 1133-1134
  • Dempsey, G.T., Vaughan, J.C., Chen, K.H., Bates, M., Zhuang, X., (2011) Nat. Methods, 8, pp. 1027-1036
  • McKinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W., Looger, L.L., (2009) Nat. Methods, 6, pp. 131-133
  • Vestergaard, C.L., (2016) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 94
  • Michalet, X., Berglund, A.J., (2012) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 85
  • Schuler, B., Lipman, E.A., Eaton, W.A., (2002) Nature, 419, pp. 743-747
  • Pertsinidis, A., Zhang, Y., Chu, S., (2010) Nature, 466, pp. 647-651
  • Voie, A.H., Burns, D.H., Spelman, F.A., (1993) J. Microsc., 170, pp. 229-236
  • Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S., (1986) Opt. Lett., 11, pp. 288-290
  • Cohen, A.E., Moerner, W.E., (2005) Appl. Phys. B, 86

Citas:

---------- APA ----------
Balzarotti, F., Eilers, Y., Gwosch, K.C., Gynnå, A.H., Westphal, V., Stefani, F.D., Elf, J.,..., Hell, S.W. (2017) . Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355(6325), 606-612.
http://dx.doi.org/10.1126/science.aak9913
---------- CHICAGO ----------
Balzarotti, F., Eilers, Y., Gwosch, K.C., Gynnå, A.H., Westphal, V., Stefani, F.D., et al. "Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes" . Science 355, no. 6325 (2017) : 606-612.
http://dx.doi.org/10.1126/science.aak9913
---------- MLA ----------
Balzarotti, F., Eilers, Y., Gwosch, K.C., Gynnå, A.H., Westphal, V., Stefani, F.D., et al. "Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes" . Science, vol. 355, no. 6325, 2017, pp. 606-612.
http://dx.doi.org/10.1126/science.aak9913
---------- VANCOUVER ----------
Balzarotti, F., Eilers, Y., Gwosch, K.C., Gynnå, A.H., Westphal, V., Stefani, F.D., et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Sci. 2017;355(6325):606-612.
http://dx.doi.org/10.1126/science.aak9913