Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We analyze the evolution of Fe xii coronal plasma upflows from the edges of ten active regions (ARs) as they cross the solar disk using the Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) to do this. Confirming the results of Démoulin et al. (Sol. Phys.283, 341, 2013), we find that for each AR there is an observed long-term evolution of the upflows. This evolution is largely due to the solar rotation that progressively changes the viewpoint of dominantly stationary upflows. From this projection effect, we estimate the unprojected upflow velocity and its inclination to the local vertical. AR upflows typically fan away from the AR core by 40° to nearly vertical for the following polarity. The span of inclination angles is more spread out for the leading polarity, with flows angled from −29° (inclined toward the AR center) to 28° (directed away from the AR). In addition to the limb-to-limb apparent evolution, we identify an intrinsic evolution of the upflows that is due to coronal activity, which is AR dependent. Furthermore, line widths are correlated with Doppler velocities only for the few ARs with the highest velocities. We conclude that for the line widths to be affected by the solar rotation, the spatial gradient of the upflow velocities must be large enough such that the line broadening exceeds the thermal line width of Fe xii. Finally, we find that upflows occurring in pairs or multiple pairs are a common feature of ARs observed by Hinode/EIS, with up to four pairs present in AR 11575. This is important for constraining the upflow-driving mechanism as it implies that the mechanism is not local and does not occur over a single polarity. AR upflows originating from reconnection along quasi-separatrix layers between overpressure AR loops and neighboring underpressure loops is consistent with upflows occurring in pairs, unlike other proposed mechanisms that act locally in one polarity. © 2017, The Author(s).

Registro:

Documento: Artículo
Título:Apparent and Intrinsic Evolution of Active Region Upflows
Autor:Baker, D.; Janvier, M.; Démoulin, P.; Mandrini, C.H.
Filiación:Mullard Space Science Laboratory, University College London, Holmbury, St. Mary, Dorking, Surrey, KT22 9XF, United Kingdom
Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, Orsay cedex, 91405, France
Observatoire de Paris, LESIA, UMR 8109 (CNRS), Meudon Principal cedex, 92195, France
Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales (FCEN), UBA, Buenos Aires, Argentina
Palabras clave:Active regions, magnetic fields; Active regions, velocity field
Año:2017
Volumen:292
Número:4
DOI: http://dx.doi.org/10.1007/s11207-017-1072-9
Título revista:Solar Physics
Título revista abreviado:Sol. Phys.
ISSN:00380938
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_00380938_v292_n4_p_Baker

Referencias:

  • Aulanier, G., Pariat, E., Démoulin, P., DeVore, C.R., Slip-running reconnection in quasi-separatrix layers (2006) Solar Phys., 238, p. 347. , ADS
  • Baker, D., van Driel-Gesztelyi, L., Mandrini, C.H., Démoulin, P., Murray, M.J., Magnetic reconnection along quasi-separatrix layers as a driver of ubiquitous active region outflows (2009) Astrophys. J., 705, p. 926. , ADS
  • Baker, D., Brooks, D.H., Démoulin, P., Yardley, S.L., van Driel-Gesztelyi, L., Long, D.M., Green, L.M., FIP bias evolution in a decaying active region (2015) Astrophys. J., 802, p. 104. , ADS
  • Bradshaw, S.J., Aulanier, G., Del Zanna, G., A reconnection-driven rarefaction wave model for coronal outflows (2011) Astrophys. J., 743, p. 66. , ADS
  • Brooks, D.H., Warren, H.P., The coronal source of extreme-ultraviolet line profile asymmetries in solar active region outflows (2012) Astrophys. J. Lett., 760. , ADS
  • Bryans, P., Young, P.R., Doschek, G.A., Multiple component outflows in an active region observed with the EUV imaging spectrometer on hinode (2010) Astrophys. J., 715, p. 1012. , ADS
  • Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Wikstol, Ø., The EUV imaging spectrometer for hinode (2007) Solar Phys., 243, p. 19. , ADS
  • Culhane, J.L., Brooks, D.H., van Driel-Gesztelyi, L., Démoulin, P., Baker, D., DeRosa, M.L., Mandrini, C.H., Zurbuchen, T.H., Tracking solar active region outflow plasma from its source to the near-earth environment (2014) Solar Phys., 289, p. 3799. , ADS
  • De Pontieu, B., McIntosh, S.W., Quasi-periodic propagating signals in the solar corona: The signature of magnetoacoustic waves or high-velocity upflows? (2010) Astrophys. J., 722, p. 1013. , ADS
  • De Pontieu, B., McIntosh, S.W., Hansteen, V.H., Schrijver, C.J., Observing the roots of solar coronal heating in the chromosphere (2009) Astrophys. J. Lett., 701. , ADS
  • Del Zanna, G., Flows in active region loops observed by hinode EIS (2008) Astron. Astrophys., 481. , ADS
  • Del Zanna, G., Aulanier, G., Klein, K.-L., Török, T., A single picture for solar coronal outflows and radio noise storms (2011) Astron. Astrophys., 526. , ADS
  • Démoulin, P., Where will efficient energy release occur in 3-D magnetic configurations? (2007) Adv. Space Res., 39, p. 1367. , ADS
  • Démoulin, P., Hénoux, J.C., Priest, E.R., Mandrini, C.H., Quasi-separatrix layers in solar flares. I. Method (1996) Astron. Astrophys., 308, p. 643. , ADS
  • Démoulin, P., Bagala, L.G., Mandrini, C.H., Hénoux, J.C., Rovira, M.G., Quasi-separatrix layers in solar flares. II. Observed magnetic configurations (1997) Astron. Astrophys., 325, p. 305. , ADS
  • Démoulin, P., Baker, D., Mandrini, C.H., van Driel-Gesztelyi, L., The 3D geometry of active region upflows deduced from their limb-to-limb evolution (2013) Solar Phys., 283, p. 341. , ADS
  • Doschek, G.A., Warren, H.P., Mariska, J.T., Muglach, K., Culhane, J.L., Hara, H., Watanabe, T., Flows and nonthermal velocities in solar active regions observed with the EUV imaging spectrometer on hinode: A tracer of active region sources of heliospheric magnetic fields? (2008) Astrophys. J., 686, p. 1362. , ADS
  • Galsgaard, K., Madjarska, M.S., Vanninathan, K., Huang, Z., Presmann, M., Active region upflows. II. Data driven magnetohydrodynamic modelling (2015) Astron. Astrophys., 584. , ADS
  • Hara, H., Watanabe, T., Harra, L.K., Culhane, J.L., Young, P.R., Mariska, J.T., Doschek, G.A., Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with hinode EIS (2008) Astrophys. J. Lett., 678. , ADS
  • Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D., Outflows at the edges of active regions: Contribution to solar wind formation? (2008) Astrophys. J. Lett., 676. , ADS
  • Janvier, M., Three-dimensional magnetic reconnection and its application to solar flares (2017) J. Plasma Phys.
  • Mandrini, C.H., Baker, D., Démoulin, P., Cristiani, G.D., van Driel-Gesztelyi, L., Vargas Domínguez, S., Nuevo, F.A., Pick, M., Parallel evolution of quasi-separatrix layers and active region upflows (2015) Astrophys. J., 809, p. 73. , ADS
  • Marsch, E., Tian, H., Sun, J., Curdt, W., Wiegelmann, T., Plasma flows guided by strong magnetic fields in the solar corona (2008) Astrophys. J., 685, p. 1262. , ADS
  • McIntosh, S.W., De Pontieu, B., High-speed transition region and coronal upflows in the quiet sun (2009) Astrophys. J., 707, p. 524. , ADS
  • Murray, M.J., Baker, D., van Driel-Gesztelyi, L., Sun, J., Outflows at the edges of an active region in a coronal hole: A signature of active region expansion? (2010) Solar Phys., 261, p. 253. , ADS
  • Ofman, L., Wang, T.J., Davila, J.M., Slow magnetosonic waves and fast flows in active region loops (2012) Astrophys. J., 754, p. 111. , ADS
  • Okamoto, T.J., Tsuneta, S., Lites, B.W., Kubo, M., Yokoyama, T., Berger, T.E., Ichimoto, K., Title, A.M., Emergence of a helical flux rope under an active region prominence (2008) Astrophys. J. Lett., 673. , ADS
  • Peter, H., Asymmetries of solar coronal extreme ultraviolet emission lines (2010) Astron. Astrophys., 521. , ADS
  • Sakao, T., Kano, R., Narukage, N., Kotoku, J., Bando, T., DeLuca, E.E., Lundquist, L.L., Nakatani, I., Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind (2007) Science, 318, p. 1585. , ADS
  • Su, Y., van Ballegooijen, A., Lites, B.W., Deluca, E.E., Golub, L., Grigis, P.C., Huang, G., Ji, H., Observations and nonlinear force-free field modeling of active region 10953 (2009) Astrophys. J., 691, p. 105. , ADS
  • Testa, P., De Pontieu, B., Hansteen, V., High spatial resolution Fe XII observations of solar active regions (2016) Astrophys. J., 827, p. 99. , ADS
  • Tian, H., McIntosh, S.W., De Pontieu, B., Martínez-Sykora, J., Sechler, M., Wang, X., Two components of the solar coronal emission revealed by extreme-ultraviolet spectroscopic observations (2011) Astrophys. J., 738, p. 18. , ADS
  • Tian, H., McIntosh, S.W., Wang, T., Ofman, L., De Pontieu, B., Innes, D.E., Peter, H., Persistent doppler shift oscillations observed with hinode/EIS in the solar corona: Spectroscopic signatures of Alfvénic waves and recurring upflows (2012) Astrophys. J., 759, p. 144. , ADS
  • van Driel-Gesztelyi, L., Green, L.M., Evolution of active regions (2015) Living Rev. Solar Phys., 12, p. 1. , ADS
  • van Driel-Gesztelyi, L., Culhane, J.L., Baker, D., Démoulin, P., Mandrini, C.H., DeRosa, M.L., Rouillard, A.P., Brooks, D.H., Magnetic topology of active regions and coronal holes: Implications for coronal outflows and the solar wind (2012) Solar Phys., 281, p. 237. , ADS
  • Vanninathan, K., Madjarska, M.S., Galsgaard, K., Huang, Z., Doyle, J.G., Active region upflows. I. Multi-instrument observations (2015) Astron. Astrophys., 584. , ADS
  • Verwichte, E., Marsh, M., Foullon, C., Van Doorsselaere, T., De Moortel, I., Hood, A.W., Nakariakov, V.M., Periodic spectral line asymmetries in solar coronal structures from slow magnetoacoustic waves (2010) Astrophys. J. Lett., 724. , ADS
  • Wang, T.J., Ofman, L., Davila, J.M., Mariska, J.T., Hinode/EIS observations of propagating low-frequency slow magnetoacoustic waves in fan-like coronal loops (2009) Astron. Astrophys., 503. , ADS
  • Warren, H.P., Ugarte-Urra, I., Young, P.R., Stenborg, G., The temperature dependence of solar active region outflows (2011) Astrophys. J., 727, p. 58. , ADS
  • Young, P.R., Watanabe, T., Hara, H., Mariska, J.T., High-precision density measurements in the solar corona. I. Analysis methods and results for Fe XII and Fe XIII (2009) Astron. Astrophys., 495, p. 587. , ADS
  • Zangrilli, L., Poletto, G., Evolution of active region outflows throughout an active region lifetime (2016) Astron. Astrophys., 594. , ADS

Citas:

---------- APA ----------
Baker, D., Janvier, M., Démoulin, P. & Mandrini, C.H. (2017) . Apparent and Intrinsic Evolution of Active Region Upflows. Solar Physics, 292(4).
http://dx.doi.org/10.1007/s11207-017-1072-9
---------- CHICAGO ----------
Baker, D., Janvier, M., Démoulin, P., Mandrini, C.H. "Apparent and Intrinsic Evolution of Active Region Upflows" . Solar Physics 292, no. 4 (2017).
http://dx.doi.org/10.1007/s11207-017-1072-9
---------- MLA ----------
Baker, D., Janvier, M., Démoulin, P., Mandrini, C.H. "Apparent and Intrinsic Evolution of Active Region Upflows" . Solar Physics, vol. 292, no. 4, 2017.
http://dx.doi.org/10.1007/s11207-017-1072-9
---------- VANCOUVER ----------
Baker, D., Janvier, M., Démoulin, P., Mandrini, C.H. Apparent and Intrinsic Evolution of Active Region Upflows. Sol. Phys. 2017;292(4).
http://dx.doi.org/10.1007/s11207-017-1072-9