Artículo

Busaniche, M.; Cignoli, R.; Marcos, M.A."A Categorical Equivalence for Stonean Residuated Lattices" (2019) Studia Logica. 107(2):399-421
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We follow the ideas given by Chen and Grätzer to represent Stone algebras and adapt them for the case of Stonean residuated lattices. Given a Stonean residuated lattice, we consider the triple formed by its Boolean skeleton, its algebra of dense elements and a connecting map. We define a category whose objects are these triples and suitably defined morphisms, and prove that we have a categorical equivalence between this category and that of Stonean residuated lattices. We compare our results with other works and show some applications of the equivalence. © 2018, Springer Science+Business Media B.V., part of Springer Nature.

Registro:

Documento: Artículo
Título:A Categorical Equivalence for Stonean Residuated Lattices
Autor:Busaniche, M.; Cignoli, R.; Marcos, M.A.
Filiación:Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ, Predio Dr. Alberto Cassano del CCT-CONICET-Santa Fe, Colectora de la Ruta Nacional no. 168, Santa Fe, Argentina
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Boolean algebras; Stonean residuated lattices; Triples
Año:2019
Volumen:107
Número:2
Página de inicio:399
Página de fin:421
DOI: http://dx.doi.org/10.1007/s11225-018-9800-1
Handle:http://hdl.handle.net/20.500.12110/paper_00393215_v107_n2_p399_Busaniche
Título revista:Studia Logica
Título revista abreviado:Stud. Logica
ISSN:00393215
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00393215_v107_n2_p399_Busaniche

Referencias:

  • Aguzzoli, S., Flaminio, T., Ugolini, S., Equivalences between the subcategories of MTL-algebras via Boolean algebras and prelinear semihoops (2017) Journal of Logic and Computation, , https://doi.org/10.1093/logcom/exx014
  • Bredon, G.E., (1997) Sheaf Theory, Second Edition, Graduate Texts in Mathematics 170, , Springer-Verlag, New York - Heidelberg - Berlin
  • Burris, S., Sankappanavar, H.P., (1981) A Course in Universal Algebra Graduate Texts in Mathematics, 78. , Springer-Verlag, New York - Heidelberg - Berlin
  • Chen, C.C., Grätzer, G., Stone Lattices. I: Construction Theorems (1969) Canad. J. Math., 21, pp. 884-994
  • Cignoli, R., Free algebras in varieties of Stonean residuated lattices (2008) Soft Comput., 12, pp. 315-320
  • Cignoli, R., Esteva, F., Commutative integral bounded residuated lattices with an added involution (2009) Ann. Pure Appl. Logic, 161, pp. 150-160
  • Cignoli, R., Torrens, A., An algebraic analysis of product logic (2000) Multiple-Valued Logic, 5, pp. 45-65
  • Cignoli, R., Torrens, A., Free algebras in varieties of BL-algebras with a Boolean retract (2002) Algebra Univers., 48, pp. 55-79
  • Cignoli, R., Torrens, A., Free Algebras in varieties of Glivenko MTL-algebras satisfying the equation 2 (x 2 ) = (2 x) 2 (2006) Studia Logica, 83, pp. 157-181
  • Cignoli, R., Torrens, A., Erratum to: Free Algebras in varieties of Glivenko MTL-algebras satisfying the equation 2 (x 2 ) = (2 x) 2 (2017) Studia Logica, 105, pp. 227-228
  • Cignoli, R., Torrens, A., Varieties of commutative integral bounded residuated lattices admitting a Boolean retraction term (2012) Studia Logica, 100, pp. 1107-1136
  • Davey, B.A., Sheaf spaces and sheaves of universal algebras (1973) Math. Z., 134, pp. 275-290
  • Esteva, F., Godo, L., Monoidal t-norm based logic: towards a logic for left continuous t-norms (2001) Fuzzy Sets and Systems, 124, pp. 271-288
  • Galatos, N.P., Jipsen, T., Kowalskiono, H., (2007) Residuated Lattices: An Algebraic Glimpse at Substructural Logics, , Elsevier, New York
  • Grätzer, G., (1968) Universal Algebra, , Van trand, Princeton
  • Grätzer, G., (1973) General Lattice Theory, , Academic Press, New York San Francisco
  • Jacobson, N., (1989) Basic algebra II, , Second, W. H. Freeman and Company, New York
  • Katriňák, T., A new proof of the construction theorem for Stone algebras (1973) Proceedings of the American Mathematical Society, 40, pp. 75-78
  • Katriňák, T., Mederly, P., Constructions of p-algebras (1983) Algebra Univers., 17, pp. 288-316
  • Knoebel, A., (2012) Sheaves of algebras over Boolean spaces, , Birkhäuser, Basel
  • Kowalskiono, T.H., Residuated Lattices: An Algebraic Glimpse at Logics without Contraction, , Preliminary report
  • Mac Lane, S., (1998) Categories for the Working Mathematician, 5. , 2nd edition, Graduate Texts in Mathematics, Springer, Berlin
  • Maddana Swamy, U., Rama Rao, V.V., Triple and sheaf representations of Stone lattices (1975) Algebra Universalis, 5, pp. 104-113
  • Maeda, F., Maeda, S., (1970) Theory of Symmetric Lattices, , Springer-Verlag, Berlin Heidelberg New York
  • McKenzie, R.G.F., McNultytaylor, W.E., (1987) Algebras, Lattices, Varieties, I. , Wadsworth and Brooks/Cole, Monterey
  • Montagna, F., Ugolini, S., A categorical equivalence for product algebras (2015) Studia Logica, 103, pp. 345-373
  • Schmidt, J., (1975)

Citas:

---------- APA ----------
Busaniche, M., Cignoli, R. & Marcos, M.A. (2019) . A Categorical Equivalence for Stonean Residuated Lattices. Studia Logica, 107(2), 399-421.
http://dx.doi.org/10.1007/s11225-018-9800-1
---------- CHICAGO ----------
Busaniche, M., Cignoli, R., Marcos, M.A. "A Categorical Equivalence for Stonean Residuated Lattices" . Studia Logica 107, no. 2 (2019) : 399-421.
http://dx.doi.org/10.1007/s11225-018-9800-1
---------- MLA ----------
Busaniche, M., Cignoli, R., Marcos, M.A. "A Categorical Equivalence for Stonean Residuated Lattices" . Studia Logica, vol. 107, no. 2, 2019, pp. 399-421.
http://dx.doi.org/10.1007/s11225-018-9800-1
---------- VANCOUVER ----------
Busaniche, M., Cignoli, R., Marcos, M.A. A Categorical Equivalence for Stonean Residuated Lattices. Stud. Logica. 2019;107(2):399-421.
http://dx.doi.org/10.1007/s11225-018-9800-1