Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Two main lines of evidence disagree whether or not the Patagonian blocks collided with Gondwana. All models invoke the voluminous magmatism of the La Esperanza Complex as evidence for active subduction magmatic arc or to a postcollisional setting. The evolution of this bimodal igneous suite is reassessed with field, geochronological (SHRIMP U-Pb zircon and K-Ar mica) and petrophysical data. Emplacement of high-K calk-alkaline granitic magmas occurred at shallow crustal levels (2–8 ± 2 km depth) related to the development and collapse of a caldera associated with a regional NW-SE structural trend. Magmatism involved intermediate hybrid pulses at 273 ± 2 Ma and 255 ± 2 Ma (Prieto Granodiorite) that shifted like a yo-yo to acidic magmas at 260 ± 2 Ma and 250 ± 2 Ma (Donosa and Calvo granites). Absence of solid-state deformation features and the low anisotropy degrees in the granites indicate that its fabric is magmatic in origin. Magnetic fabric in granodiorites displays a concentrical pattern with subhorizontal foliations and lineations. Parallel to the volcanic axis, magnetic foliations and moderately plunging lineations indicate a common feeder system for plutonics and volcanics. Donosa Granite shows a discordant pattern with WNW-ESE ENE-WSW trending low plunging lineations and foliations. The plutono-volcanic system construction (273–255 Ma) followed NW-SE and NE-SW diamond shape faults trends and supracrustal discontinuities. Magmatic Climax is bracketed at 260 Ma. The collapse of the edifice is evidenced by the intrusion of acid magma plugs and dike swarms between 250 and 246 Ma. A similar age range was identified in other areas of Patagonia related to syn and postcollisional tectonic events. No evidence of tectonic activity such as major uplift, metamorphism or thrusting was found excepting regional strike-slip faulting and extension. Therefore, La Esperanza Complex is a high crustal level episode, and as such may not have structurally recorded an active collision during its crystallization and cooling. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:Emplacement and temporal constraints of the Gondwanan intrusive complexes of northern Patagonia: La Esperanza plutono-volcanic case
Autor:Martínez Dopico, C.I.; López de Luchi, M.G.; Rapalini, A.E.; Wemmer, K.; Fanning, C.M.; Basei, M.A.S.
Filiación:Instituto de Geocronología y Geología Isotópica (INGEIS), Pabellón INGEIS, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
Instituto de Ciencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), Department of Geological Sciences, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
Geoscience Centre of the University of Göttingen (GZG), Göttingen, Germany
Research School of Earth Sciences, The Australian National University, Mills Road, Canberra, ACT 2600, Australia
Instituto de Geociências, Universidade de São Paulo (USP), Rua do Lago 562, São Paulo, CEP-05508-900, Brazil
Palabras clave:Anisotropy of magnetic susceptibility; Gondwana; Patagonia; Permian; SHRIMP U-Pb dating; Subvolcanic magmatic complexes; Geochronology; Granite; Hydraulic structures; Magnetic anisotropy; Magnetic susceptibility; Magnetism; Materials handling equipment; Mica; Shellfish; Silicate minerals; Strike-slip faults; Volcanoes; Zircon; Anisotropy of magnetic susceptibility; Gondwana; Magmatic complexes; Patagonia; Permian; Shrimp u-pb dating; Lanthanum compounds; emplacement; Gondwana; magmatism; magnetic anisotropy; magnetic fabric; magnetic susceptibility; Permian; SHRIMP dating; uranium-lead dating; Patagonia; Decapoda (Crustacea); Esperanza
Año:2017
Volumen:712-713
Página de inicio:249
Página de fin:269
DOI: http://dx.doi.org/10.1016/j.tecto.2017.05.015
Título revista:Tectonophysics
Título revista abreviado:Tectonophysics
ISSN:00401951
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00401951_v712-713_n_p249_MartinezDopico

Referencias:

  • Annen, C., Implications of incremental emplacement of magma bodies for magma differentiation thermal aureole dimensions and plutonism-volcanism relationships (2011) Tectonophysics, 500, pp. 3-10
  • Archanjo, C., Launeau, P., Bouchez, J., Magnetic fabric vs magnetite and biotite shape fabrics of magnetite bearing granite pluton of Gameleiras (northeast Brazil) (1995) Phys. Earth Planet. Inter., 89, pp. 63-75
  • Archanjo, C.J., Hollanda, M.H.B.M., Rodrigues, S.W.O., Neves, B.B.N., Amstrong, R., Fabrics of pre- and syn granite plutons and chronology of shear zones in the Eastern Borborema Province, NE Brazil (2008) J. Struct. Geol., 30, pp. 310-326
  • Biedermann, A.R., Bender Koch, C., Pettke, T., Hirt, A.M., Magnetic anisotropy in natural amphibole crystals (2015) Am. Mineral.
  • Biedermann, A.R., Pettke, T., Angel, R.J., Hirt, A.M., Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase (2016) Geophys. J. Int., 205 (1), pp. 479-489
  • Bolle, O., Besse, M., Diot, H., Magma flow and feeder chamber location inferred from magnetic fabrics in jotunitic dykes (Rogaland anorthosite province, SW Norway) (2010) Tectonophysics, 493, pp. 42-57
  • Borradaile, G.J., Henry, B., Tectonic applications of magnetic susceptibility and its anisotropy (1997) Earth Sci. Rev., 42, pp. 49-93
  • Borradaile, G.J., Jackson, M., Anisotropy of magnetic susceptibility (AMS): Magnetic petrofabrics of deformed rocks. (2004) Geol. Soc. Spec. Pub., 238 (2004), pp. 299-360
  • Borradaile, G.J., Jackson, M., Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM) (2010) J. Struct. Geol., 31, pp. 1519-1551
  • Bouchez, J.-L., Granite is never isotropic: an introduction to AMS studies of Granitic Rocks (1997) Granite: From Segregation of Melt to Emplacement Fabrics, pp. 95-112. , J.-L. Bouchez D.H.W. Hutton W.W. Stephens
  • Bouchez, J.L., Gleizes, G., Tjouadi, T., Rochette, P., Microstructure and magnect susceptibility applied to emplacement kinematics of granites: the example of the Foix pluton (French Pyrenees) (1990) Tectonophysics, 184, pp. 157-171
  • Brown, M., Solar, G.S., Granite ascent and emplacement during contractional deformation in convergent orogens (1998) J. Struct. Geol., 20, pp. 1365-1393
  • Cañón-Tapia, E., Single-grain versus distribution anisotropy: a simple three simensional model (1996) Phys. Earth Planet. Inter., 94, pp. 149-158
  • Cañón-Tapia, E., Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments (2001) Tectonophysics, 340, pp. 117-131
  • Cañón-Tapia, E., Mendoza-Borunda, R., Magnetic petrofabric of igneous rocks: lessons from pyroclastic density current deposits and obsidians (2014) J. Volcanol. Geotherm. Res., 289, pp. 151-169
  • Cawood, P., Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic (2005) Earth Sci. Rev., 69, pp. 249-279
  • Chadima, M., Jelinek, V., Cureval 8, thermomagnetic curves browser and analyzer for Windows (2008), www.agico.com; Chadima, M., Jelinek, V., Anisoft 4.2, anisotropy data browser for Windows (2009), www.agico.com; Chernicoff, C.J., Zapettini, E., Geophysical evidence for terrane boundaries in South-Central Argentina (2004) Gondwana Res., 7, pp. 1105-1116
  • Chernicoff, C.J., Zappettini, E.O., Santos, J.O.S., McNaughton, N.J., Belousova, E., Combined U-Pb SHRIMP and Hf isotope study of the Late Paleozoic Yaminué Complex, Río Negro Province, Argentina: implications for the origin and evolution of the Patagonia composite terrane (2013) Geosci. Front., 4, pp. 37-56
  • Dunlop, D.J., Özdemir, Ö., Rock Magnetism: Fundamentals and Frontiers (1997), Cambridge University Press New York, London and Cambridge (573 pp.); Fanning, C.M., Hervé, F., Pankhurst, R.J., Rapela, C.W., Kleiman, L.E., Yaxley, G.M., Castillo, P., Lu-Hf isotope evidence for the provenance of Permian detritus in accretionary complexes of western Patagonia and the northern Antartic Peninsula region (2011) J. S. Am. Earth Sci., 32 (4), pp. 485-496
  • Ferré, E.C., Theoretical models of intermediate and inverse AMS fabrics (2002) Geophys. Res. Lett., 29
  • Ferré, E.C., Wilson, J., Gleizes, G., Magnetic susceptibility and AMS of the Bushveld alkaline granites, South Africa (1999) Tectonophysics, 307, pp. 113-133
  • Gaillot, P., de Saint Blanquat, M., Bouchez, J.L., Effects of magnetic interactions in anisotropy of magnetic susceptibility: models, experiments and implications for igneous rock fabrics quantification (2006) Tectonophysics, 418, pp. 3-19
  • Giacosa, R., Lema, H., Busteros, A., Zubía, M., Cucchi, R., Di Tommaso, I., Estructura del Triásico de la región norte del Macizo Nordpatagónico (40°–41°S, 67°30′–69°45′O, Río Negro) (2007) Rev. Asoc. Geol. Argent., 62, pp. 355-365
  • Gleizes, G., Nédélec, A., Bouchez, J.-L., Autran, A., Rochette, P., Magnetic susceptibility of the Mont Louis Andorra ilmenite-type granite (Pyrenees): a new tool for the petrographic characterization and regional mapping of zoned granite plutons (1993) J. Geophys. Res., 98, pp. 4317-4331
  • González, P.D., Sato, A.M., Naipauer, M., Varela, R., Llambías, E., Greco, G., González, S.N., García, V., Conexión Macizo Norpatagónico- Antártida oriental: fósiles arqueociátidos, comparación geológica y circones detríticos (2011) XVIII Congreso Geológico Argentino, Neuquén, , (2 pp)
  • González, P.D., Tortello, M.F., Damborenea, S.E., Naipauer, M., Sato, A.M., Varela, R., Archaecyaths from South America: review and new record (2012) Geol. J.
  • Grégoire, V., Darrozes, P., Gaillot, P., Nédélec, A., Launeau, P., Magnetite grain shape fabric and distribution anisotropy vs. rock magnetic fabric: a three-dimensional case study (1998) J. Struct. Geol., 20, pp. 937-944
  • Gregori, D.A., Kostadinoff, J., Strazzere, L., Raniolo, A., Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina (2008) Gondwana Res., 14, pp. 429-450
  • Gregori, D.A., Kostadinoff, J., Álvarez, G., Raniolo, A., Strazzere, L., Martinez, J.C., Barros, M., Preandean geological configuration of the eastern North Patagonian Massif, Argentina (2013) Geosci. Front., 4, pp. 693-708
  • Gregori, D.A., Saini-Eidukat, B., Benedini, L., Strazzere, L., Barros, M., Kostadinoff, J., The Gondwana Orogeny in northern North Patagonian Massif: evidences from the Caita Có granite, La Seña and Pangaré mylonites, Argentina (2016) Geosci. Front., 7, pp. 621-638
  • Guerrero-Suárez, S., Martín-Hernández, F., Haematite natural crystals: non-linear initial susceptibility at low temperature (2016) Geophys. J. Int.
  • Hargraves, R.B., Johnson, D., Chan, C.Y., Distribution anisotropy: the cause of AMS in igneous rocks (1991) Geophys. Res. Lett., 18, pp. 2193-2196
  • Higgins, M.D., Quantitative Textural Measurements in Igneous and Metamorphic Petrology (2006), Cambridge University Press Cambridge (265 pp); Hrouda, F., The effect of quartz on the magnetic anisotropy of quartzite (1986) Stud. Geophys. Geod., 30, pp. 39-45
  • Hrouda, F., Modelling relationship between bulk susceptibility and AMS in rocks consisting of two magnetic fractions represented by ferromagnetic and paramagnetic minerals - implications for understanding magnetic fabrics in deformed rocks (2010) J. Geol. Soc. India, 75, pp. 254-266
  • Jelinek, V., Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens (1978) Stud. Geophys. Geod., 22, pp. 50-62
  • Jelinek, V., Characterization of the magnetic fabrics of rocks (1981) Tectonophysics, 79, pp. T63-T67
  • Kleiman, L.E., Japas, M.S., The Choiyoi volcanic province at 34°S–36°S (San Rafael, Mendoza, Argentina): implications for the Late Paleozoic evolution of the southwestern margin of Gondwana (2009) Tectonophysics, 473 (3/4), pp. 283-299
  • Kostadinoff, J., Gregori, D.A., Raniolo, A., Configuración geofísica- gológica del sector norte de la provincia de Río Negro (2005) Rev. Asoc. Geol. Argent., 60 (2), pp. 368-376
  • Kretz, R., Symbols of rock-forming minerals (1983) Am. Mineral., 68, pp. 277-279
  • Kruckenberg, S.C., Ferré, E.C., Teyssier, C., Vanderhaeghe, O., Whitney, D.L., Skord, J.A., Seaton, N., Viscoplastic flow in migmatites deduced from fabric anisotropy: an example from the Naxos dome, Greece (2010) J. Geophys. Res. Solid Earth, 115, p. B09401
  • Labudia, C.H., Bjerg, E.A., Geología del Sector Oriental de la Hoja Bajo Hondo (39e), Provincia de Río Negro (1994) Rev. Asoc. Geol. Argent., 49, pp. 284-296
  • Launeau, P., Cruden, A.R., Magmatic fabric acquisition mechanisms in a syenite: Results of a combined anisotropy of magnetic susceptibility and image analysis study. (1998) J. Geophys Res. Solid Earth
  • Lince Klinger, F., León, M., Martínez, P., Weidmann, C., Anci, S., Álvarez, O., Modelo geofísico con datos gravimétricos y aeromagnéticos en el borde noreste del Macizo Norpatagónico, Río Negro, Argentina (2014) Geoacta, 39, pp. 51-61
  • Llambías, E.J., Rapela, C.W., Geología de los complejos eruptivos del Paleozoico superior de La Esperanza, provincia de Río Negro (1984) Rev. Asoc. Geol. Argent., 40, pp. 4-25
  • Llambías, E.J., Quenardelle, S., Montenegro, T., The Choiyoi Group from central Argentina: a subalkaline transitional to alkaline association in the craton adjacent to the active margin of the Gondwana continent (2003) J. S. Am. Earth Sci., 16, pp. 243-257
  • López de Luchi, M.G., Cerredo, M.E., Geochemistry of the Mamil Choique granitoids at Rio Chico, Río Negro, Argentina: Late Paleozoic crustal melting in the North Patagonian Massif (2008) J. S. Am. Earth Sci., 25, pp. 526-546
  • López de Luchi, M., Rapalini, A.E., Siegesmund, S., Steenken, A., Application of magnetic fabrics to the emplacement and tectonic history of Devonian granitoids in central Argentina (2004) Geol. Soc. Lond. Spec. Publ., 238, pp. 447-474
  • López de Luchi, M.G., Rapalini, A.E., Tomezzoli, R.N., Magnetic fabric and microstructures of Late Paleozoic granitoids from the North Patagonian Massif: evidence of a collision between Patagonia and Gondwana? (2010) Tectonophysics, 494, pp. 118-137
  • Ludwig, K.R., User's manual for ISOPLOT 3.6. A geochronological toolkit for Microsoft Excel (2008) Berkeley Geochronology Center Special Publication N°4. Berkeley
  • Luppo, T., Martínez Dopico, C., Rapalini, A.E., López de Luchi, M.G., Miguez, M., Fanning, M., Permo-Triassic paleomagnetic poles from volcanic units in northern Patagonia: are we tracking the final stages of collision of Patagonia? (2017) Tectonophysics, , (submitted)
  • Martínez Dopico, C.I., Geología, petrogénesis y condiciones de emplazamiento de los granitoides permo-triásicos del área de La Esperanza, Macizo Norpatagónico: Inferencias sobre la construcción del borde SO del Gondwana (2013), University of Buenos Aires (520 pp, unpublished, PhD Thesis); Martínez Dopico, C.I., López de Luchi, M.G., Rapalini, A.E., Kleinhanns, I., Distinguishing crustal segments in the North Patagonian Massif: insights from Sm-Nd systematics (2011) J. S. Am. Earth Sci., 31, pp. 324-341
  • Martínez Dopico, C.I., López de Luchi, M.G., Wemmer, K., Rapalini, A.E., Composición química de biotita y hornblenda y edades de enfriamiento como indicadores de las condiciones de emplazamiento del Complejo Plutónico La Esperanza (Pérmico Superior), Macizo Norpatagónico (2013) Rev. Asoc. Geol. Argent., 70, pp. 3-15
  • Martínez Dopico, C.I., Rapalini, A.E., López de Luchi, M.G., Wemmer, K., Assembly of shallow intrusions from multiple magma pulses in La Esperanza Plutonic Complex, North Patagonian Massif, Argentina (2013) Latinmag Letter, 3 (OB06), pp. 1-5
  • Martínez Dopico, C.I., Tohver, E., López de Luchi, M.G., Wemmer, K., Rapalini, A.E., Cawood, P., Jurassic cooling ages in paleozoic to early mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K-40Ar mica and U-Pb zircon evidence (2016) Int. J. Earth Sci.
  • Martín-Hernández, F.C., Luneburg, C., Aubourg, M., Jackson, M., Magnetic fabric: methods and applications (2004) Geological Society of London, Special Publication 238, London, , (551 pp)
  • Pángaro, F., Ramos, V.A., Paleozoic crustal blocks of onshore and offshore central Argentina: new pieces of the southwestern Gondwana collage and their role in the accretion of Patagonia and the evolution of Mesozoic south Atlantic sedimentary basins (2012) Mar. Pet. Geol.
  • Pankhurst, R.J., Rapela, C.W., Caminos, R., Llambías, E., Parica, C., A revised age for the granites of the central Somuncura Batholith, North Patagonian Massif (1992) J. S. Am. Earth Sci., 5, pp. 321-325
  • Pankhurst, R.J., Rapela, C.W., Fanning, C.M., Márquez, M., Gondwanide continental collision and the origin of Patagonia (2006) Earth Sci. Rev., 76, pp. 235-257
  • Pankhurst, R.J., Rapela, C.W., López De Luchi, M.G., Rapalini, A.E., Fanning, C.M., Galindo, C., The Gondwana connections of northern Patagonia (2014) J. Geol. Soc., 171, pp. 313-328
  • Paterson, S.R., Fowler, T.K., Schmidt, K.L., Yoshinobu, A.S., Yuan, E.S., Miller, R.B., Interpreting magmatic fabric patterns in pluton (1998) Lithos, 44, pp. 53-82
  • Potter, D.K., Stephenson, A., Single-domain particles in rocks and magnetic fabric analysis (1988) Geophys. Res. Lett., 15, pp. 1097-1100
  • Ramos, V.A., Patagonia: ¿Un continente paleozoico a la deriva? (1984) 9° Congreso Geológico Argentino, Actas 2, pp. 311-325. , (San Carlos de Bariloche)
  • Ramos, V.A., Patagonia: a Paleozoic continent adrift? (2008) J. S. Am. Earth Sci., 26, pp. 235-251
  • Ramos, V.A., Naipauer, M., Patagonia: where does it come from? (2014) J. Iber. Geol., 40, pp. 367-380
  • Rapalini, A.E., Syntectonic magnetization of the Mid-Paleozoic Sierra Grande Formation. Further constraints for the tectonic evolution of Patagonia (1998) J. Geol. Soc. Lond., 155, pp. 105-114
  • Rapalini, A.E., López de Luchi, M., Martínez Dopico, C., Lince Klinger, F., Giménez, M., Martínez, P., Did Patagonia collide against Gondwana in the Late Paleozoic? Some insights from a multidisciplinary study of magmatic units of the North Patagonian Massif (2010) Geol. Acta, 8, pp. 349-371
  • Rapalini, A.E., López de Luchi, M., Tovher, E., Cawood, P.A., The South American ancestry of the North Patagonian Massif: geochronological evidence for an autochthonous origin? (2013) Terra Nova, 25, pp. 337-342
  • Rapela, C.W., Caminos, R., Geochemical characteristics of the Upper Paleozoic magmatism in the eastern sector of Northpatagonian Massif (1987) Rev. Bras. Geosci., 17, pp. 535-543
  • Rapela, C.W., Kay, S., The Late Paleozoic to recent magmatic evolution of northern Patagonia (1988) Episodes, 11, pp. 175-182
  • Rapela, C.W., Llambías, E.J., Evolución magmática y relaciones regionales de los Complejos Eruptivos de La Esperanza, provincia de Río Negro (1985) Rev. Asoc. Geol. Argent., 40, pp. 4-25
  • Rochette, P., Magnetics susceptibility of the rock matrix related to magnetic fabric studies (1987) J. Struct. Geol., 9, pp. 1015-1020
  • Rochette, P., Jackson, M., Aubourg, C., Rock magnetism and the interpretation of anisotropy of magnetic susceptibility (1992) Rev. Geophys., 30, pp. 209-226
  • Sato, A.M., Llambías, E.J., Basei, M.A.S., Castro, C.E., Three stages in the Late Paleozoic magmatism to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins (2015) J. S. Am. Earth Sci., 63, pp. 48-69
  • Schiuma, M., Llambías, E.J., New ages on Lower Jurassic volcanism in the dorsal de Huincul, Neuquén (2008) Rev. Asoc. Geol. Argent., 63 (4), pp. 644-652
  • Schöpa, A., Floess, D., de Saint Blanquat, M., Annen, C., Launeau, P., The relation between magnetite and silicate fabric in granitoids of the Adamello Batholith (2015) Tectonophysics, 642, pp. 1-15
  • Sen, K., Mamtani, M.A., Magnetic fabric, shape preferred orientation and regional strain in granitic rocks (2006) J. Struct. Geol., 28, pp. 1870-1882
  • St. Blanquat, M.D., Law, R., Bouchez, J.-L., Morgan, S., Internal structure and emplacement of the Papoose Flat pluton: an integrated structural, petrographic and magnetic susceptibility study (2001) Geol. Soc. Am. Bull., 113, pp. 976-996
  • Stephenson, A., Distribution anisotropy: two simple models for magnetic lineation and foliation (1994) Phys. Earth Planet. Inter., 82, pp. 49-53
  • Tarling, D.H., Hrouda, F., The Magnetic Anisotropy of Rocks (1993), Chapman & Hall London (217 p); Tomezzoli, R.N., Rapalini, A.E., López de Luchi, M.G., Martínez Dopico, C., Further evidence of widespread Permian remagnetization in the North Patagonian Massif, Argentina (2013) Gondwana Res.
  • Varela, R., Basei, M.A.S., Cingolani, C.A., Siga, O., Jr., Passarelli, C., El basamento cristalino de los Andes norptagónicos en Argentina: Geocronología e interpretación tectónica (2005) Rev. Geol. Chile, 32, pp. 167-187
  • Vernon, R.H., A Practical Guide to Rock Microstructure (2004), Cambridge University Press Cambridge (594 pp); Verwey, E.J.W., Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures (1939) Nature, 144, pp. 327-328
  • Von Gosen, W., Polyphase structural evolution in the northeastern segment of the North Patagonian Massif (southern Argentina) (2002) J. S. Am. Earth Sci., 15, pp. 591-623
  • Von Gosen, W., Thrust tectonics in the North Patagonian Massif (Argentina): implications for a Patagonian plate (2003) Tectonics, 22 (1), p. 1005
  • Von Gosen, W., Stages of Late Paleozoic deformation and intrusive activity in the western part of the North Patagonian Massif (southern Argentina) and their geotectonic implications (2009) Geol. Mag., 146, pp. 48-71
  • Wemmer, K., K/Ar-Altersdatierungsmöglichkeiten für retrograde Deformationsprozesse im spröden und duktilen Bereich-Beispiele aus der KTB-Vorbohrung (Oberpfalz) und dem Bereich der Insubrischen Linie (N-Italien) (1991) Göttinger Arbeiten zur Geologie und Paläontologie 51, pp. 1-61
  • Williams, I.S., U–Th–Pb geochronology by ion microprobe (1998) Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Reviews of Economic Geology 7, pp. 1-35. , M.A. McKibben W.C. Shanks III W.I. Ridley
  • Wilson, J., Ferré, E.C., Lespinasse, P., Repeated tabular injection of high-level alkaline granites in the eastern Bushveld, South Africa (2000) J. Geol. Soc. Lond., 17, pp. 1077-1088

Citas:

---------- APA ----------
Martínez Dopico, C.I., López de Luchi, M.G., Rapalini, A.E., Wemmer, K., Fanning, C.M. & Basei, M.A.S. (2017) . Emplacement and temporal constraints of the Gondwanan intrusive complexes of northern Patagonia: La Esperanza plutono-volcanic case. Tectonophysics, 712-713, 249-269.
http://dx.doi.org/10.1016/j.tecto.2017.05.015
---------- CHICAGO ----------
Martínez Dopico, C.I., López de Luchi, M.G., Rapalini, A.E., Wemmer, K., Fanning, C.M., Basei, M.A.S. "Emplacement and temporal constraints of the Gondwanan intrusive complexes of northern Patagonia: La Esperanza plutono-volcanic case" . Tectonophysics 712-713 (2017) : 249-269.
http://dx.doi.org/10.1016/j.tecto.2017.05.015
---------- MLA ----------
Martínez Dopico, C.I., López de Luchi, M.G., Rapalini, A.E., Wemmer, K., Fanning, C.M., Basei, M.A.S. "Emplacement and temporal constraints of the Gondwanan intrusive complexes of northern Patagonia: La Esperanza plutono-volcanic case" . Tectonophysics, vol. 712-713, 2017, pp. 249-269.
http://dx.doi.org/10.1016/j.tecto.2017.05.015
---------- VANCOUVER ----------
Martínez Dopico, C.I., López de Luchi, M.G., Rapalini, A.E., Wemmer, K., Fanning, C.M., Basei, M.A.S. Emplacement and temporal constraints of the Gondwanan intrusive complexes of northern Patagonia: La Esperanza plutono-volcanic case. Tectonophysics. 2017;712-713:249-269.
http://dx.doi.org/10.1016/j.tecto.2017.05.015