Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. The phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granuleassociated protein that protects recombinant Escherichia coli against several kinds of stress. PhaP enhances growth and poly(3-hydroxybutyrate) synthesis in polymerproducing recombinant strains and reduces the formation of inclusion bodies during overproduction of heterologous proteins. In this work, the heterologous expression of this phasin in E. coli was used as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which both GroELS and PhaP were observed to exert a beneficial effect that varied depending on the chemical tested. Lastly, the potential of PhaP and GroEL to enhance the accumulation of ethanol or 1,3-propanediol was analyzed in recombinant E. coli. Strains that overexpressed either groEL or phaP had increased growth, reflected in a higher final biomass and product titer than the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve the production of biofuels and other chemicals. © 2017 American Society for Microbiology.

Registro:

Documento: Artículo
Título:A new player in the biorefineries field: Phasin PhaP enhances tolerance to solvents and boosts ethanol and 1,3-propanediol synthesis in Escherichia coli
Autor:Mezzina, M.P.; Álvarez, D.S.; Egoburo, D.E.; Peña, R.D.; Nikel, P.I.; Pettinari, M.J.
Filiación:Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Departamento de Química Biológica, Buenos Aires, Argentina
Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
Palabras clave:1,3-propanediol; Butanol; Chaperone; Escherichia coli; Ethanol; GroEL; Metabolic engineering; PhaP; Biofuels; Biosynthesis; Butenes; Escherichia coli; Ethanol; Metabolic engineering; Recombinant proteins; 1 ,3 propanediol; Chaperone; Granule-associated proteins; GroEL; Heterologous expression; PhaP; Poly-3-hydroxybutyrate; Recombinant Escherichia coli; Organic solvents; bioengineering; biofuel; biomass; coliform bacterium; ethanol; fitness; gene expression; growth rate; protein; recombination; solvent; Azotobacter; Bacteria (microorganisms); Escherichia coli; 1,3-propanediol; alcohol; bacterial protein; biofuel; phasin; plant lectin; propanediol derivative; Azotobacter; Escherichia coli; genetics; metabolism; Azotobacter; Bacterial Proteins; Biofuels; Escherichia coli; Ethanol; Plant Lectins; Propylene Glycols
Año:2017
Volumen:83
Número:14
DOI: http://dx.doi.org/10.1128/AEM.00662-17
Título revista:Applied and Environmental Microbiology
Título revista abreviado:Appl. Environ. Microbiol.
ISSN:00992240
CODEN:AEMID
CAS:alcohol, 64-17-5; 1,3-propanediol; Bacterial Proteins; Biofuels; Ethanol; phasin; Plant Lectins; Propylene Glycols
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00992240_v83_n14_p_Mezzina

Referencias:

  • Tambo, N., Technology in the high entropy world (2006) Water Sci Technol, 53, pp. 1-8. , http:ps://doi.org/10.2166/wst.2006.269
  • Jang, Y.S., Kim, B., Shin, J.H., Choi, Y.J., Choi, S., Song, C.W., Lee, J., Lee, S.Y., Bio-based production of C2-C6 platform chemicals (2012) Biotechnol Bioeng, 109, pp. 2437-2459. , http:ps://doi.org/10.1002/bit.24599
  • Demain, A.L., Biosolutions to the energy problem (2009) J Ind Microbiol Biotechnol, 36, pp. 319-332. , http:ps://doi.org/10.1007/s10295-008-0521-8
  • Cho, C., Choi, S.Y., Luo, Z.W., Lee, S.Y., Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering (2015) Biotechnol Adv, 33, pp. 1455-1466. , http:ps://doi.org/10.1016/j.biotechadv.2014.11.006
  • Ruiz, J.A., de Almeida, A., Godoy, M.S., Mezzina, M.P., Bidart, G.N., Méndez, B.S., Pettinari, M.J., Nikel, P.I., Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals (2012) Comput Struct Biotechnol J, 3. , http:ps://doi.org/10.5936/csbj.201210019
  • Koutinas, A.A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Lopez Garcia, I., Kookos, I.K., Papanikolaou, S., Lin, C.S.K., Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers (2014) Chem Soc Rev, 43, pp. 2587-2627. , http:ps://doi.org/10.1039/c3cs60293a
  • Chen, Y., Nielsen, J., Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks (2013) Curr Opin Biotechnol, 24, pp. 965-972. , http:ps://doi.org/10.1016/j.copbio.2013.03.008
  • Cherubini, F., The biorefinery concept: using biomass instead of oil for producing energy and chemicals (2010) Energy Convers Manag, 51, pp. 1412-1421. , http:ps://doi.org/10.1016/j.enconman.2010.01.015
  • Scholey, D.V., Burton, E.J., Williams, P.E.V., The bio refinery; producing feed and fuel from grain (2016) Food Chem, 197, pp. 937-942. , http:ps://doi.org/10.1016/j.foodchem.2015.11.063
  • Nikel, P.I., Ramirez, M.C., Pettinari, M.J., Méndez, B.S., Galvagno, M.A., Ethanol synthesis from glycerol by Escherichia coli redox mutants expressing adhE from Leuconostoc mesenteroides (2010) J Appl Microbiol, 109, pp. 492-504. , http:ps://doi.org/10.1111/j.1365-2672.2010.04668.x
  • Stewart, G.G., Panchal, C.J., Sills, A.M., Biology of ethanol-producing microorganisms (1983) Crit Rev Biotechnol, 1, pp. 161-188. , http:ps://doi.org/10.3109/07388558309077977
  • Olson, D.G., Sparling, R., Lynd, L.R., Ethanol production by engineered thermophiles (2015) Curr Opin Biotechnol, 33, pp. 130-141. , http:ps://doi.org/10.1016/j.copbio.2015.02.006
  • Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T., Ingram, L.O., Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II (1991) Appl Environ Microbiol, 57, pp. 893-900
  • Jarboe, L.R., Grabar, T.B., Yomano, L.P., Shanmugan, K.T., Ingram, L.O., Development of ethanologenic bacteria (2007) Adv Biochem Eng Biotechnol, 108, pp. 237-261. , http:ps://doi.org/10.1007/10_2007_068
  • Atsumi, S., Cann, A.F., Connor, M.R., Shen, C.R., Smith, K.M., Brynildsen, M.P., Chou, K.J.Y., Liao, J.C., Metabolic engineering of Escherichia coli for 1-butanol production (2008) Metab Eng, 10, pp. 305-311. , http:ps://doi.org/10.1016/j.ymben.2007.08.003
  • Green, E.M., Fermentative production of butanol-the industrial perspective (2011) Curr Opin Biotechnol, 22, pp. 337-343. , http:ps://doi.org/10.1016/j.copbio.2011.02.004
  • Moon, H.G., Jang, Y.S., Cho, C., Lee, J., Binkley, R., Lee, S.Y., One hundred years of clostridial butanol fermentation (2016) FEMS Microbiol Lett, 363. , http:ps://doi.org/10.1093/femsle/fnw001
  • Schiel-Bengelsdorf, B., Montoya, J., Linder, S., Dürre, P., Butanol fermentation (2013) Environ Technol, 34, pp. 1691-1710. , http:ps://doi.org/10.1080/09593330.2013.827746
  • Nakamura, C.E., Whited, G.M., Metabolic engineering for the microbial production of 1,3-propanediol (2003) Curr Opin Biotechnol, 14, pp. 454-459. , http:ps://doi.org/10.1016/j.copbio.2003.08.005
  • Saxena, R.K., Anand, P., Saran, S., Isar, J., Microbial production of 1,3-propanediol: recent developments and emerging opportunities (2009) Biotechnol Adv, 27, pp. 895-913. , http:ps://doi.org/10.1016/j.biotechadv.2009.07.003
  • Jiang, W., Wang, S., Wang, Y., Fang, B., Key enzymes catalyzing glycerol to 1,3-propanediol (2016) Biotechnol Biofuels, 9, p. 57. , http:ps://doi.org/10.1186/s13068-016-0473-6
  • Sabra, W., Groeger, C., Zeng, A.-P., Microbial cell factories for diol production (2016) Adv Biochem Eng Biotechnol, 155, pp. 165-197. , http:ps://doi.org/10.1007/10_2015_330
  • Lee, S.Y., Kim, H.U., Systems strategies for developing industrial microbial strains (2015) Nat Biotechnol, 33, pp. 1061-1072. , http:ps://doi.org/10.1038/nbt.3365
  • Goulas, K.A., Toste, F.D., Combining microbial production with chemical upgrading (2016) Curr Opin Biotechnol, 38, pp. 47-53. , http:ps://doi.org/10.1016/j.copbio.2015.12.019
  • Blanch, H.W., Bioprocessing for biofuels (2012) Curr Opin Biotechnol, 23, pp. 390-395. , http:ps://doi.org/10.1016/j.copbio.2011.10.002
  • Jarboe, L.R., Zhang, X., Wang, X., Moore, J.C., Shanmugam, K.T., Ingram, L.O., Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology (2010) J Biomed Biotechnol, 2010. , https://doi.org/10.1155/2010/761042
  • Baral, N.R., Shah, A., Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass (2014) Appl Microbiol Biotechnol, 98, pp. 9151-9172. , http:ps://doi.org/10.1007/s00253-014-6106-8
  • Chen, R., Dou, J., Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development (2016) Biotechnol Lett, 38, pp. 213-221. , http:ps://doi.org/10.1007/s10529-015-1976-0
  • Zingaro, K.A., Papoutsakis, E.T., Toward a semisynthetic stress response system to engineer microbial solvent tolerance (2012) mBio, 3. , http:ps://doi.org/10.1128/mBio.00308-12
  • Xia, P., Turner, T.L., Jayakody, L.N., The role of GroE chaperonins in developing biocatalysts for biofuel and chemical production (2016) Enzyme Eng, 5, p. 153. , http:ps://doi.org/10.4172/2329-6674.1000153
  • Ling, H., Teo, W., Chen, B., Leong, S.S.J., Chang, M.W., Microbial tolerance engineering toward biochemical production: from lignocellulose to products (2014) Curr Opin Biotechnol, 29, pp. 99-106. , http:ps://doi.org/10.1016/j.copbio.2014.03.005
  • Mukhopadhyay, A., Tolerance engineering in bacteria for the production of advanced biofuels and chemicals (2015) Trends Microbiol, 23, pp. 498-508. , http:ps://doi.org/10.1016/j.tim.2015.04.008
  • Nicolaou, S.A., Gaida, S.M., Papoutsakis, E.T., A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation (2010) Metab Eng, 12, pp. 307-331. , http:ps://doi.org/10.1016/j.ymben.2010.03.004
  • Brynildsen, M.P., Liao, J.C., An integrated network approach identifies the isobutanol response network of Escherichia coli (2009) Mol Syst Biol, 5, p. 277. , http:ps://doi.org/10.1038/msb.2009.34
  • Rutherford, B.J., Dahl, R.H., Price, R.E., Szmidt, H.L., Benke, P.I., Mukhopadhyay, A., Keasling, J.D., Functional genomic study of exogenous n-butanol stress in Escherichia coli (2010) Appl Environ Microbiol, 76, pp. 1935-1945. , http:ps://doi.org/10.1128/AEM.02323-09
  • Minty, J.J., Lesnefsky, A.A., Lin, F., Chen, Y., Zaroff, T.A., Veloso, A.B., Xie, B., Lin, X.N., Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli (2011) Microb Cell Fact, 10, p. 18. , http:ps://doi.org/10.1186/1475-2859-10-18
  • Soufi, B., Krug, K., Harst, A., Macek, B., Characterization of the E. coli proteome and its modifications during growth and ethanol stress (2015) Front Microbiol, 6, p. 103. , http:ps://doi.org/10.3389/fmicb.2015.00103
  • Dunlop, M.J., Engineering microbes for tolerance to next-generation biofuels (2011) Biotechnol Biofuels, 4, p. 32. , http:ps://doi.org/10.1186/1754-6834-4-32
  • Mao, S., Luo, Y., Zhang, T., Li, J., Bao, G., Zhu, Y., Chen, Z., Ma, Y., Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield (2010) J Proteome Res, 9, pp. 3046-3061. , http:ps://doi.org/10.1021/pr9012078
  • Isar, J., Rangaswamy, V., Improved n-butanol production by solvent tolerant Clostridium beijerinckii (2012) Biomass Bioenergy, 37, pp. 9-15. , http:ps://doi.org/10.1016/j.biombioe.2011.12.046
  • Zingaro, K.A., Papoutsakis, E.T., GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns (2013) Metab Eng, 15, pp. 196-205. , http:ps://doi.org/10.1016/j.ymben.2012.07.009
  • Abdelaal, A.S., Ageez, A.M., Abd El-Hadi, A.E.-H.A., Abdallah, N.A., Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum (2015) 3 Biotech, 5, pp. 401-410
  • Tomas, C.A., Welker, N.E., Papoutsakis, E.T., Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program (2003) Appl Environ Microbiol, 69, pp. 4951-4965. , http:ps://doi.org/10.1128/AEM.69.8.4951-4965.2003
  • de Almeida, A., Catone, M.V., Rhodius, V.A., Gross, C.A., Pettinari, M.J., Unexpected stress-reducing effect of PhaP, a poly(3-hydroxybutyrate) granule-associated protein, in Escherichia coli (2011) Appl Environ Microbiol, 77, pp. 6622-6629. , http:ps://doi.org/10.1128/AEM.05469-11
  • Mezzina, M.P., Wetzler, D.E., de Almeida, A., Dinjaski, N., Prieto, M.A., Pettinari, M.J., A phasin with extra talents: a polyhydroxyalkanoate granuleassociated protein has chaperone activity (2015) Environ Microbiol, 17, pp. 1765-1776. , http:ps://doi.org/10.1111/1462-2920.12636
  • Takano, T., Kakefuda, T., Involvement of a bacterial factor in morphogenesis of bacteriophage capsid (1972) Nat New Biol, 239, pp. 34-37
  • Veinger, L., Diamant, S., Buchner, J., Goloubinoff, P., The small heatshock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network (1998) J Biol Chem, 273, pp. 11032-11037. , http:ps://doi.org/10.1074/jbc.273.18.11032
  • Nikel, P.I., Pettinari, M.J., Galvagno, M.A., Méndez, B.S., Metabolic selective pressure stabilizes plasmids carrying biosynthetic genes for reduced biochemicals in Escherichia coli redox mutants (2010) Appl Microbiol Biotechnol, 88, pp. 563-573. , http:ps://doi.org/10.1007/s00253-010-2774-1
  • Colin, T., Bories, A., Moulin, G., Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation (2000) Appl Microbiol Biotechnol, 54, pp. 201-205. , http:ps://doi.org/10.1007/s002530000365
  • Horinouchi, T., Tamaoka, K., Furusawa, C., Ono, N., Suzuki, S., Hirasawa, T., Yomo, T., Shimizu, H., Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress (2010) BMC Genomics, 11, p. 579. , http:ps://doi.org/10.1186/1471-2164-11-579
  • Szymanowska-Powalowska, D., Kubiak, P., Effect of 1,3-propanediol, organic acids, and ethanol on growth and metabolism of Clostridium butyricum DSP1 (2015) Appl Microbiol Biotechnol, 99, pp. 3179-3189. , http:ps://doi.org/10.1007/s00253-014-6292-4
  • Ramos, J.L., Cuenca, M.S., Molina-Santiago, C., Segura, A., Duque, E., Gómez-García, M.R., Udaondo, Z., Roca, A., Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida (2015) FEMS Microbiol Rev, 39, pp. 555-566. , http:ps://doi.org/10.1093/femsre/fuv006
  • Alsaker, K.V., Paredes, C., Papoutsakis, E.T., Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expressionbased systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum (2010) Biotechnol Bioeng, 105, pp. 1131-1147. , http:ps://doi.org/10.1002/bit.22628
  • Mezzina, M.P., Wetzler, D.E., Catone, M.V., Bucci, H., Di Paola, M., Pettinari, M.J., A phasin with many faces: structural insights on PhaP from Azotobacter sp. FA8 (2014) PLoS One, 9. , http:ps://doi.org/10.1371/journal.pone.0103012
  • Nikel, P.I., de Lorenzo, V., Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis (2014) New Biotechnol, 31, pp. 562-571. , http:ps://doi.org/10.1016/j.nbt.2014.02.006
  • Mezzina, M.P., Pettinari, M.J., Phasins, multifaceted polyhydroxyalkanoate granule-associated proteins (2016) Appl Environ Microbiol, 82, pp. 5060-5067. , http:ps://doi.org/10.1128/AEM.01161-16
  • Yoon, S.H., Han, M.J., Lee, S.Y., Jeong, K.J., Yoo, J.S., Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture (2003) Biotechnol Bioeng, 81, pp. 753-767. , http:ps://doi.org/10.1002/bit.10626
  • Flora, A.B., (2015) Detecção e clonagem de genes de biossíntese de 1,3-propanodiol a partir de glicerol em Klebsiella pneumoniae GLC29, , Programa de Pós-Graduação Interunidades em Biotecnologia, USP, Sao Paulo, Brazil
  • Da Silva, G.P., De Lima, C.J.B., Contiero, J., Production and productivity of 1,3-propanediol from glycerol by Klebsiella pneumoniae GLC29 (2015) Catal Today, 257, pp. 259-266. , http:ps://doi.org/10.1016/j.cattod.2014.05.016
  • Yasukawa, T., Kanei-Ishii, C., Maekawa, T., Fujimoto, J., Yamamoto, T., Ishii, S., Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin (1995) J Biol Chem, 270, pp. 25328-25331. , http:ps://doi.org/10.1074/jbc.270.43.25328
  • Borden, J.R., Papoutsakis, E.T., Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum (2007) Appl Environ Microbiol, 73, pp. 3061-3068. , http:ps://doi.org/10.1128/AEM.02296-06
  • Reyes, L.H., Abdelaal, A.S., Kao, K.C., Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors (2013) Appl Environ Microbiol, 79, pp. 5313-5320. , http:ps://doi.org/10.1128/AEM.01703-13
  • Egoburo, D.E., Diaz Peña, R., Kolender, A., Pettinari, M.J., Optimization and validation of a GC-FID method for quantitative determination of 1,3-propanediol in bacterial culture aqueous supernatants containing glycerol Chromatographia, , https://doi.org/10.1007/s10337-017-3310-6
  • Bianchi, A., Baneyx, F., Hyperosmotic shock induces the σ32 and σE stress regulons of Escherichia coli (1999) Mol Microbiol, 34, pp. 1029-1038. , http:ps://doi.org/10.1046/j.1365-2958.1999.01664.x
  • Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., Peterson, K.M., Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes (1995) Gene, 166, pp. 175-176. , http:ps://doi.org/10.1016/0378-1119(95)00584-1
  • Silva-Rocha, R., Martínez-García, E., Calles, B., Chavarría, M., Arce-Rodríguez, A., de Las Heras, A., Páez-Espino, A.D., de Lorenzo, V., The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes (2013) Nucleic Acids Res, 41, pp. 666-675. , http:ps://doi.org/10.1093/nar/gks1119
  • de Almeida, A., Nikel, P.I., Giordano, A.M., Pettinari, M.J., Effects of granule-associated protein PhaP on glycerol-dependent growth and polymer production in poly(3-hydroxybutyrate)-producing Escherichia coli (2007) Appl Environ Microbiol, 73, pp. 7912-7916. , http:ps://doi.org/10.1128/AEM.01900-07

Citas:

---------- APA ----------
Mezzina, M.P., Álvarez, D.S., Egoburo, D.E., Peña, R.D., Nikel, P.I. & Pettinari, M.J. (2017) . A new player in the biorefineries field: Phasin PhaP enhances tolerance to solvents and boosts ethanol and 1,3-propanediol synthesis in Escherichia coli. Applied and Environmental Microbiology, 83(14).
http://dx.doi.org/10.1128/AEM.00662-17
---------- CHICAGO ----------
Mezzina, M.P., Álvarez, D.S., Egoburo, D.E., Peña, R.D., Nikel, P.I., Pettinari, M.J. "A new player in the biorefineries field: Phasin PhaP enhances tolerance to solvents and boosts ethanol and 1,3-propanediol synthesis in Escherichia coli" . Applied and Environmental Microbiology 83, no. 14 (2017).
http://dx.doi.org/10.1128/AEM.00662-17
---------- MLA ----------
Mezzina, M.P., Álvarez, D.S., Egoburo, D.E., Peña, R.D., Nikel, P.I., Pettinari, M.J. "A new player in the biorefineries field: Phasin PhaP enhances tolerance to solvents and boosts ethanol and 1,3-propanediol synthesis in Escherichia coli" . Applied and Environmental Microbiology, vol. 83, no. 14, 2017.
http://dx.doi.org/10.1128/AEM.00662-17
---------- VANCOUVER ----------
Mezzina, M.P., Álvarez, D.S., Egoburo, D.E., Peña, R.D., Nikel, P.I., Pettinari, M.J. A new player in the biorefineries field: Phasin PhaP enhances tolerance to solvents and boosts ethanol and 1,3-propanediol synthesis in Escherichia coli. Appl. Environ. Microbiol. 2017;83(14).
http://dx.doi.org/10.1128/AEM.00662-17