Artículo

Bordenave, C.D.; Rocco, R.; Babuin, M.F.; Campestre, M.P.; Escaray, F.J.; Gárriz, A.; Antonelli, C.; Carrasco, P.; Ruiz, O.A.; Menéndez, A.B. "Characterization of the primary metabolome during the long-term response to NaHCO3-derived alkalinity in Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20" (2017) Acta Physiologiae Plantarum. 39(3)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This study compares the response of two ecotypes of the model species Lotus japonicas, MG-20 and Gifu-B-129, to soil alkalinity, in terms of plant survival and changes in global primary metabolome profiles. After 54 days of treatment with 30 mM NaHCO3, a higher survival was registered in MG-20, with respect to Gifu-B-129 plants. Gas chromatography–mass spectrometry (GC–MS) analysis of shoot extracts from both ecotypes yielded 123 different analytes, 62 of which were identified, including organic acids (OA), amino acids (AA), sugars and polyols. Glycolysis, TCA cycle and amino acids metabolism pathways were differently affected by alkalinity according to the ecotype. The lower tolerance of Gifu B-129 plants to 10 mM NaHCO3, compared with MG-20 ones could be related, at least partially, to the differential accumulation of phosphoric, lactic, threonic, succinic and p-coumaric acids, as well as β-alanine and valine. © 2017, Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków.

Registro:

Documento: Artículo
Título:Characterization of the primary metabolome during the long-term response to NaHCO3-derived alkalinity in Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20
Autor:Bordenave, C.D.; Rocco, R.; Babuin, M.F.; Campestre, M.P.; Escaray, F.J.; Gárriz, A.; Antonelli, C.; Carrasco, P.; Ruiz, O.A.; Menéndez, A.B.
Filiación:Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
Departamento de Bioquímica y Biología Vegetal-Universitat de Valencia, Valencia, Spain
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
INMIBO (CONICET), Buenos Aires, Argentina
Palabras clave:Alkalinity; GC–MS; Gifu B-120; Lotus japonicus; Metabome; Miyakojima MG-20
Año:2017
Volumen:39
Número:3
DOI: http://dx.doi.org/10.1007/s11738-017-2369-x
Título revista:Acta Physiologiae Plantarum
Título revista abreviado:Acta Physiol. Plant.
ISSN:01375881
CODEN:APPLD
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_01375881_v39_n3_p_Bordenave

Referencias:

  • Babuin, M.F., Campestre, M.P., Rocco, R., Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization (2014) PLoS One, 9. , PID: 24835559
  • Barnett, N.M., Naylor, A.W., Amino acid and protein metabolism in Bermuda grass during water stress (1966) Plant Physiol, 41, pp. 1222-1230. , COI: 1:CAS:528:DyaF28XkvFaksLo%3D, PID: 16656387
  • Bie, Z., Ito, T., Shinohara, Y., Effects of sodium sulfate and sodium bicarbonate on the growth, gas exchange and mineral composition of lettuce (2004) Sci Hortic (Amsterdam), 99, pp. 215-224. , COI: 1:CAS:528:DC%2BD2cXjsVyitg%3D%3D
  • Colebatch, G., Desbrosses, G., Ott, T., Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus (2004) Plant J, 39, pp. 487-512. , PID: 15272870
  • Desbrosses, G.G., Kopka, J., Udvardi, M.K., Lotus japonicus metabolic profiling. Development of gas chromatography–mass spectrometry resources for the study of plant-microbe interactions (2005) Plant Physiol, 137, p. 1302. , COI: 1:CAS:528:DC%2BD2MXjslaqurg%3D, PID: 15749991
  • Di Rienzo, J.A., Casanoves F (2010) Balzarini MG et al(2010) InfoStat versión
  • Díaz, P., Borsani, O., Monza, J., Lotus-related species and their agronomic importance (2005) Lotus Japan handbook, pp. 25-37. , Marquez AJ, (ed), Springer, The Netherlands
  • Ding, Y.Z., Song, Z.G., Feng, R.W., Interaction of organic acids and pH on multi-heavy metal extraction from alkaline and acid mine soils (2014) Int J Environ Sci Technol, 11, pp. 33-42. , COI: 1:CAS:528:DC%2BC2cXptVOgug%3D%3D
  • Duda, C.T., Cherry, J.H., Chromatin- and nuclei-directed ribonucleic acid synthesis in sugar beet root (1971) Plant Physiol, 47, pp. 262-268. , COI: 1:CAS:528:DyaE3MXosVSltg%3D%3D, PID: 16657606
  • Escaray, F.J., Menéndez, A.B., Gárriz, A., Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils (2012) Plant Sci, 182, pp. 121-133. , COI: 1:CAS:528:DC%2BC3MXhsFejur%2FJ, PID: 22118623
  • Fiehn, O., Kopka, J., Dörmann, P., Metabolite profiling for plant functional genomics (2000) Nat Biotechnol, 18, pp. 1157-1161. , COI: 1:CAS:528:DC%2BD3cXotVSmtL0%3D, PID: 11062433
  • Gilbert, G.A., Gadush, M.V., Wilson, C., Madore, M.A., Amino acid accumulation in sink and source tissues of Coleus blumei Benth during salinity stress (1998) J Exp Bot, 49, pp. 107-114. , COI: 1:CAS:528:DyaK1cXptlygug%3D%3D
  • Greenway, H., Munns, R., Mechanisms of salt tolerance in nonhalophytes (1980) Annu Rev Plant Physiol, 31, pp. 149-190. , COI: 1:CAS:528:DyaL3cXksVWntb4%3D
  • Guo, R., Yang, Z., Li, F., Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress (2015) BMC Plant Biol, 15, pp. 170-183. , PID: 26149720
  • Hageman, R.H., Ammonium versus nitrate nutrition of higher plants (1984) Nitrogen in crop production, pp. 67-85. , Hauck RD, (ed), ASA, CSSA, SSSA, Madison
  • Hatfield, R.D., Marita, J.M., Enzymatic processes involved in the incorporation of hydroxycinnamates into grass cell walls (2010) Phytochem Rev, 9, pp. 35-45. , COI: 1:CAS:528:DC%2BC3cXjt1CjsLY%3D
  • Heldt, H.-W., Piechulla, B., Plant biochemistry, 4th edn (2011) p 656
  • Hoagland, D.R., Arnon, D.I., The water-culture method for growing plants without soil (1950) Calif Agric Exp Stn Circ, 347, pp. 1-32
  • Hu, L., Zhang, P., Jiang, Y., Fu, J., Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in kentucky bluegrass (Poa pratensis) (2015) Plant Mol Biol Rep, 33, pp. 56-68. , COI: 1:CAS:528:DC%2BC2cXotlOksro%3D
  • Iwata, Y., Koizumi, N., Plant transducers of the endoplasmic reticulum unfolded protein response (2012) Trends Plant Sci, 17, pp. 720-727. , COI: 1:CAS:528:DC%2BC38XhtVekurjE, PID: 22796463
  • Kopka, J., Schauer, N., Krueger, S., GMD@CSB.DB: the Golm Metabolome Database (2005) Bioinformatics, 21, pp. 1635-1638. , COI: 1:CAS:528:DC%2BD2MXjtlGgsrg%3D, PID: 15613389
  • Kumar, K., Kumar, M., Kim, S.-R., Insights into genomics of salt stress response in rice (2013) Rice, 6, p. 27. , PID: 24280112
  • Lisec, J., Schauer, N., Kopka, J., Gas chromatography mass spectrometry-based metabolite profiling in plants (2006) Nat Protoc, 1, pp. 387-396. , COI: 1:CAS:528:DC%2BD28XhtFOitbnN, PID: 17406261
  • Marschner, H., Mineral nutrition of higher plants, 2nd edn (1995) p 651
  • Nikiforova, V., Freitag, J., Kempa, S., Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity (2003) Plant J, 33, pp. 633-650. , COI: 1:CAS:528:DC%2BD3sXislWiur0%3D, PID: 12609038
  • Pang, Q., Zhang, A., Zang, W., Integrated proteomics and metabolomics for dissecting the mechanism of global responses to salt and alkali stress in Suaeda corniculata (2016) Plant Soil
  • Paz, R.C., Rocco, R.A., Reinoso, H., Comparative study of alkaline, saline, and mixed saline-alkaline stresses with regard to their effects on growth, nutrient accumulation, and root morphology of Lotus tenuis (2012) J Plant Growth Regul, 31, pp. 448-459. , COI: 1:CAS:528:DC%2BC38XhtFWnsLjF
  • Rao, K.P., Rains, D.-W., Nitrate absorption by Barley: I (1976) Kinet Energ Plant Physiol, 57, pp. 55-58. , COI: 1:CAS:528:DyaE28Xos1ygtg%3D%3D
  • Rellán-Álvarez, R., Giner-Martínez-Sierra, J., Orduna, J., Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport (2010) Plant Cell Physiol, 51, pp. 91-102. , PID: 19942594
  • Roessner, U., Luedemann, A., Brust, D., Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems (2001) Plant Cell, 13, pp. 11-29. , COI: 1:CAS:528:DC%2BD3MXjslCrtr4%3D, PID: 11158526
  • Roschzttardtz, H., Grillet, L., Isaure, M.P., Plant cell nucleolus as a hot spot for iron (2011) J Biol Chem, 286, pp. 27863-27866. , COI: 1:CAS:528:DC%2BC3MXpsl2ntbg%3D, PID: 21719700
  • Roschzttardtz, H., Conéjéro, G., Divol, F., New insights into Fe localization in plant tissues Front (2013) Plant Sci, 4, p. 350
  • Rose, M.T., Rose, T.J., Pariasca-Tanaka, J., Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess (2012) Planta, 236, pp. 959-973. , COI: 1:CAS:528:DC%2BC38XhsVWnsLjK, PID: 22526504
  • Schauer, N., Steinhauser, D., Strelkov, S., GC–MS libraries for the rapid identification of metabolites in complex biological samples (2005) FEBS Lett, 579, pp. 1332-1337. , COI: 1:CAS:528:DC%2BD2MXhslCjurs%3D, PID: 15733837
  • Shahidi, F., Chandrasekara, A., Hydroxycinnamates and their in vitro and in vivo antioxidant activities (2010) Phytochem Rev, 9, pp. 147-170. , COI: 1:CAS:528:DC%2BC3cXjt1CjsbY%3D
  • Sheveleva, E., Chmara, W., Bohnert, H.J., Jensen, R.G., Increased salt and drought tolerance by d-ononitol production in transgenic Nicotiana tabacum L (1997) Plant Physiol, 115, pp. 1211-1219. , COI: 1:CAS:528:DyaK2sXns1ykuro%3D, PID: 12223867
  • Szabados, L., Kovacs, H., Zilberstein, A., Bouchereau, A., Plants in extreme environments: importance of protective compounds in stress tolerance (2011) Adv Bot Res, 57, pp. 105-150. , COI: 1:CAS:528:DC%2BC3MXps1Sitrg%3D
  • Taji, T., Takahashi, S., Shinozaki, K., Inositols and their metabolites in abiotic and biotic stress responses (2006) Biology of inositols and phosphoinositides SE-10, pp. 239-264. , Majumder AL, Biswas BB, (eds), Springer, New York
  • Valdez-Aguilar, L.A., Reed, D.W., Groth and nutrition of young bean plants under high alkalinity as affected by mixtures of ammonium, potassium, and sodium (2010) J Plant Nutr, 33, pp. 1472-1488. , COI: 1:CAS:528:DC%2BC3cXnvFKht70%3D

Citas:

---------- APA ----------
Bordenave, C.D., Rocco, R., Babuin, M.F., Campestre, M.P., Escaray, F.J., Gárriz, A., Antonelli, C.,..., Menéndez, A.B. (2017) . Characterization of the primary metabolome during the long-term response to NaHCO3-derived alkalinity in Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20. Acta Physiologiae Plantarum, 39(3).
http://dx.doi.org/10.1007/s11738-017-2369-x
---------- CHICAGO ----------
Bordenave, C.D., Rocco, R., Babuin, M.F., Campestre, M.P., Escaray, F.J., Gárriz, A., et al. "Characterization of the primary metabolome during the long-term response to NaHCO3-derived alkalinity in Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20" . Acta Physiologiae Plantarum 39, no. 3 (2017).
http://dx.doi.org/10.1007/s11738-017-2369-x
---------- MLA ----------
Bordenave, C.D., Rocco, R., Babuin, M.F., Campestre, M.P., Escaray, F.J., Gárriz, A., et al. "Characterization of the primary metabolome during the long-term response to NaHCO3-derived alkalinity in Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20" . Acta Physiologiae Plantarum, vol. 39, no. 3, 2017.
http://dx.doi.org/10.1007/s11738-017-2369-x
---------- VANCOUVER ----------
Bordenave, C.D., Rocco, R., Babuin, M.F., Campestre, M.P., Escaray, F.J., Gárriz, A., et al. Characterization of the primary metabolome during the long-term response to NaHCO3-derived alkalinity in Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20. Acta Physiol. Plant. 2017;39(3).
http://dx.doi.org/10.1007/s11738-017-2369-x