El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


This work demonstrates that the size of ZnO nanorods (ZnONR) with similar aspect ratio determines several physicochemical and microbiological properties of thermoplastic starch composites (TPS/ZnONR) at a given concentration of ZnONRs. A combination of sol-gel and hydrothermal methods was developed to synthesize ZnONR with different sizes but similar aspect ratios. Starch composites containing 1 wt.% of ZnONR were prepared by casting. Composites with smaller size nanorods (ZnONR-S) showed more efficiency in shielding UVA radiation and had a higher solubility and water vapor permeability than those with larger nanorods (ZnONR-L). Mechanical properties, biodegradability and antibacterial activity were also influenced by the size of the ZnONR. X-ray diffraction analysis showed that composites with ZnONR-S maintained the typical B-V type starch structure, intensifying the V-type starch structure peaks, while composite with ZnONR-L induced the formation of an amorphous structure, preventing starch retrogradation during storage. Properties affected by nanorods size are fundamental in determining composite applications. © 2016 Elsevier Ltd


Documento: Artículo
Título:Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites
Autor:Guz, L.; Famá, L.; Candal, R.; Goyanes, S.
Filiación:Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LPM&C), Instituto de Física de Buenos Aires (IFIBA-CONICET), Ciudad Universitaria (1428), Ciudad Autónoma de Buenos Aires, Argentina
Instituto de Investigación e Ingeniería Ambiental, CONICET, Universidad Nacional de San Martín, 25 de Mayo y Francia (1650), San Martín, Provincia de Buenos Aires, Argentina
Palabras clave:Bactericidal activity; Biodegradability; Starch composite; ZnO nanorods size; Aspect ratio; Biodegradability; Nanorods; Radiation shielding; Sol-gels; X ray diffraction analysis; Zinc oxide; Anti-bacterial activity; Bactericidal activity; Composite applications; Physicochemical property; Starch composites; Starch retrogradation; Water vapor permeability; ZnO nanorod; Starch
Página de inicio:1611
Página de fin:1619
Título revista:Carbohydrate Polymers
Título revista abreviado:Carbohydr Polym


  • ASTM D.-, Annual book of ASTM (2002), American Society for Testing and Materials West Conshohocken, USA; Alebooyeh, R., Nafchi, A., Jokr, M., The effects of ZnO nanorods on the characteristics of sago starch biodegradable films (2012) Journal of Chemical Health Risks, 2 (4)
  • Angles, M.N., Dufresne, A., Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior (2001) Macromolecules, 34 (9), pp. 2921-2931
  • (1995), Official methods of analysis Association of Official Analytical Chemists, Washington, DC (1995); Applerot, G., Lipovsky, A., Dror, R., Perkas, N., Nitzan, Y., Lubart, R., Gedanken, A., Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS mediated cell injury (2009) Advanced Functional Materials, 19 (6), pp. 842-852
  • Arfat, Y.A., Benjakul, S., Prodpran, T., Sumpavapol, P., Songtipya, P., Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles (2014) Food Hydrocolloids, 41, pp. 265-273
  • Arora, A., Padua, G.W., Review: Nanocomposites in food packaging (2010) Journal of Food Science, 75 (1), pp. R43-R49
  • Bertuzzi, M.A., Castro Vidaurre, E.F., Armada, M., Gottifredi, J.C., Water vapor permeability of edible starch based films (2007) Journal of Food Engineering, 80 (3), pp. 972-978
  • Cano, A., Fortunati, E., Cháfer, M., Kenny, J.M., Chiralt, A., González-Martínez, C., Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol) (2015) Food Hydrocolloids, 48, pp. 84-93
  • Chen, Y., Liu, C., Chang, P.R., Anderson, D.P., Huneault, M.A., Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers (2009) Polymer Engineering & Science, 49 (2), pp. 369-378
  • Chen, Y., Liu, C., Chang, P.R., Cao, X., Anderson, D.P., Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time (2009) Carbohydrate Polymers, 76 (4), pp. 607-615
  • Chen, Y.W., Qiao, Q., Liu, Y.C., Yang, G.L., Size-controlled synthesis and optical properties of small-sized ZnO nanorods (2009) The Journal of Physical Chemistry C, 113 (18), pp. 7497-7502
  • de Azeredo, H.M.C., Mattoso, L.H.C., McHugh, T.H., Nanocomposites in food packaging–A review (2011), INTECH Open Access Publisher; EFSA Panel on Food Contact Materials, E., Flavourings and Processing Aids, Scientific opinion on the safety assessment of the substance zinc oxide, nanoparticles, for use in food contact materials (2016) EFSA Journal, 14 (3), p. 8
  • Emamifar, A., Kadivar, M., Shahedi, M., Soleimanian-Zad, S., Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice (2010) Innovative Food Science & Emerging Technologies, 11 (4), pp. 742-748
  • Famá, L., Bittante, A.M.B.Q., Sobral, P.J.A., Goyanes, S., Gerschenson, L.N., Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites (2010) Materials Science and Engineering: C, 30 (6), pp. 853-859
  • Famá, L., Rojo, P.G., Bernal, C., Goyanes, S., Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus (2012) Carbohydrate Polymers, 87 (3), pp. 1989-1993
  • García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Research International, 42 (8), pp. 976-982
  • Gutiérrez, T.J., Tapia, M.S., Pérez, E., Famá, L., Structural and mechanical properties of edible films made from native and modified cush–cush yam and cassava starch (2015) Food Hydrocolloids, 45, pp. 211-217
  • Jiménez, A., Fabra, M.J., Talens, P., Chiralt, A., Edible and biodegradable starch films: A review (2012) Food and Bioprocess Technology, 5 (6), pp. 2058-2076
  • Kanmani, P., Rhim, J.-W., Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles (2014) Carbohydrate Polymers, 106, pp. 190-199
  • Laohakunjit, N., Noomhorm, A., Effect of plasticizers on mechanical and barrier properties of rice starch film (2004) Starch – Stärke, 56 (8), pp. 348-356
  • Le Bail, P., Bizot, H., Ollivon, M., Keller, G., Bourgaux, C., Buléon, A., Monitoring the crystallization of amylose–lipid complexes during maize starch melting by synchrotron x-ray diffraction (1999) Biopolymers, 50 (1), pp. 99-110
  • Li, G.R., Hu, T., Pan, G.L., Yan, T.Y., Gao, X.P., Zhu, H.Y., Morphology-function relationship of ZnO: Polar planes, oxygen vacancies, and activity (2008) The Journal of Physical Chemistry C, 112 (31), pp. 11859-11864
  • Liao, L., Lu, H.B., Li, J.C., He, H., Wang, D.F., Fu, D.J., Zhang, W.F., Size dependence of gas sensitivity of ZnO nanorods (2007) The Journal of Physical Chemistry C, 111 (5), pp. 1900-1903
  • Ma, H., Williams, P.L., Diamond, S.A., Ecotoxicity of manufactured ZnO nanoparticles–a review (2013) Environmental Pollution, 172, pp. 76-85
  • Maiti, S., Ray, D., Mitra, D., Role of crosslinker on the biodegradation behavior of starch/polyvinylalcohol blend films (2012) Journal of Polymers and the Environment, 20 (3), pp. 749-759
  • Maizura, M., Fazilah, A., Norziah, M.H., Karim, A.A., Antibacterial activity and mechanical properties of partially hydrolyzed sago starch-alginate edible film containing lemongrass oil (2007) Journal of Food Science, 72 (6), pp. C324-C330
  • Mathew, A.P., Thielemans, W., Dufresne, A., Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers (2008) Journal of Applied Polymer Science, 109 (6), pp. 4065-4074
  • Mclaren, A., Valdes-Solis, T., Li, G., Tsang, S.C., Shape and size effects of ZnO nanocrystals on photocatalytic activity (2009) Journal of the American Chemical Society, 131 (35), pp. 12540-12541
  • Medina Jaramillo, C., González Seligra, P., Goyanes, S., Bernal, C., Famá, L., Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer (2015) Starch – Stärke, 67 (9-10), pp. 780-789
  • Morales, N.J., Candal, R., Famá, L., Goyanes, S., Rubiolo, G.H., Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement (2015) Carbohydrate Polymers, 127, pp. 291-299
  • Morsy, M.K., Khalaf, H.H., Sharoba, A.M., El-Tanahi, H.H., Cutter, C.N., Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products (2014) Journal of Food Science, 79 (4), pp. M675-M684
  • Nafchi, A.M., Alias, A.K., Mahmud, S., Robal, M., Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide (2012) Journal of Food Engineering, 113 (4), pp. 511-519
  • Nafchi, A.M., Nassiri, R., Sheibani, S., Ariffin, F., Karim, A., Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide (2013) Carbohydrate Polymers, 96 (1), pp. 233-239
  • Nair, S., Sasidharan, A., Rani, V.D., Menon, D., Nair, S., Manzoor, K., Raina, S., Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells (2009) Journal of Materials Science: Materials in Medicine, 20 (1), pp. 235-241
  • Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., Dubois, P., PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics (2013) European Polymer Journal, 49 (11), pp. 3471-3482
  • Seligra, P.G., Medina Jaramillo, C., Famá, L., Goyanes, S., Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent (2016) Carbohydrate Polymers, 138, pp. 66-74
  • Shankar, S., Teng, X., Li, G., Rhim, J.-W., Preparation, characterization and antimicrobial activity of gelatin/ZnO nanocomposite films (2015) Food Hydrocolloids, 45, pp. 264-271
  • Shi, R., Liu, Q., Ding, T., Han, Y., Zhang, L., Chen, D., Tian, W., Ageing of soft thermoplastic starch with high glycerol content (2007) Journal of Applied Polymer Science, 103 (1), pp. 574-586
  • Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D., Biodegradable polymers for food packaging: A review (2008) Trends in Food Science & Technology, 19 (12), pp. 634-643
  • Siqueira, G., Bras, J., Dufresne, A., Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites (2008) Biomacromolecules, 10 (2), pp. 425-432
  • Sorrentino, A., Tortora, M., Vittoria, V., Diffusion behavior in polymer?clay nanocomposites (2006) Journal of Polymer Science Part B: Polymer Physics, 44 (2), pp. 265-274
  • Soykeabkaew, N., Supaphol, P., Rujiravanit, R., Preparation and characterization of jute- and flax-reinforced starch-based composite foams (2004) Carbohydrate Polymers, 58 (1), pp. 53-63
  • Sugarman, B., Zinc and infection (1983) Review of Infectious Diseases, 5 (1), pp. 137-147
  • Tankhiwale, R., Bajpai, S.K., Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging (2012) Colloids and Surfaces B: Biointerfaces, 90, pp. 16-20
  • Torres, F., Troncoso, O., Torres, C., Díaz, D., Amaya, E., Biodegradability and mechanical properties of starch films from Andean crops (2011) International Journal of Biological Macromolecules, 48 (4), pp. 603-606
  • van Soest, J.J., Hulleman, S., De Wit, D., Vliegenthart, J., Crystallinity in starch bioplastics (1996) Industrial Crops and Products, 5 (1), pp. 11-22
  • Vieira, M.G.A., da Silva, M.A., dos Santos, L.O., Beppu, M.M., Natural-based plasticizers and biopolymer films: A review (2011) European Polymer Journal, 47 (3), pp. 254-263
  • Wang, J., Kulkarni, A.J., Ke, F.J., Bai, Y.L., Zhou, M., Novel mechanical behavior of ZnO nanorods (2008) Computer Methods in Applied Mechanics and Engineering, 197 (41-42), pp. 3182-3189
  • Wu, T.-M., Chen, E.-C., Isothermal and nonisothermal crystallization kinetics of poly (ε-caprolactone)/multi-walled carbon nanotube composites (2006) Polymer Engineering & Science, 46 (9), pp. 1309-1317
  • Wynne-Jones, S., Blanshard, J.M.V., Hydration studies of wheat starch, amylopectin, amylose gels and bread by proton magnetic resonance (1986) Carbohydrate Polymers, 6 (4), pp. 289-306
  • Xie, F., Pollet, E., Halley, P.J., Avérous, L., Starch-based nano-biocomposites (2013) Progress in Polymer Science, 38 (10-11), pp. 1590-1628
  • Yi, S.-H., Choi, S.-K., Jang, J.-M., Kim, J.-A., Jung, W.-G., Low-temperature growth of ZnO nanorods by chemical bath deposition (2007) Journal of Colloid and Interface Science, 313 (2), pp. 705-710
  • Zhang, L., Jiang, Y., Ding, Y., Povey, M., York, D., Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) (2007) Journal of Nanoparticle Research, 9 (3), pp. 479-489
  • Zhang, Y., Chen, Y., Westerhoff, P., Crittenden, J., Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles (2009) Water Research, 43 (17), pp. 4249-4257


---------- APA ----------
Guz, L., Famá, L., Candal, R. & Goyanes, S. (2017) . Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites. Carbohydrate Polymers, 157, 1611-1619.
---------- CHICAGO ----------
Guz, L., Famá, L., Candal, R., Goyanes, S. "Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites" . Carbohydrate Polymers 157 (2017) : 1611-1619.
---------- MLA ----------
Guz, L., Famá, L., Candal, R., Goyanes, S. "Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites" . Carbohydrate Polymers, vol. 157, 2017, pp. 1611-1619.
---------- VANCOUVER ----------
Guz, L., Famá, L., Candal, R., Goyanes, S. Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites. Carbohydr Polym. 2017;157:1611-1619.