Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Starch films often present high water sensitivity, affecting their barrier and mechanical properties. The effects of processing technique, extrusion/thermo-compression and casting, and lentil protein concentration (0, 0.75 wt.% and 1.5 wt.%) on biodegradable starch films were investigated. Extrusion/thermo-compression process increased in 90% the mechanical resistance of starch films produced following the casting methodology and decreased their moisture content, water solubility and water vapor permeability in 35%, 23%, and 50%, respectively. In the presence of the protein, the mechanical properties (Young modulus and stress at break) and the water tolerance improved due to the crosslinking phenomenon prompted between the protein and the polymeric backbone, being these effects more pronounced on the extruded formulations. All samples resulted thermal stable until 240 °C and biodegraded in compost in 5 weeks. This work revealed that extrusion/thermo-compression process and proteins as crosslinking of starch are two alternatives to improve the drawbacks of starch-based materials. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films
Autor:Ochoa-Yepes, O.; Di Giogio, L.; Goyanes, S.; Mauri, A.; Famá, L.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LP&MC), Instituto de Física de Buenos Aires (IFIBA-CONICET), Buenos Aires, Argentina
Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET CCT La Plata y Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 116 S/N°, La Plata, B1900JJ, Argentina
Palabras clave:Biodegradable starch-lentil protein films; Casting; Crosslinking; Extrusion/thermo-compression; Mechanical properties; Susceptibility to water; Casting; Composting; Crosslinking; Extrusion; Mechanical properties; Proteins; Starch; Biodegradable starch; Mechanical resistance; Physicochemical property; Processing technique; Protein concentrations; Protein films; Starch-based materials; Water vapor permeability; Mechanical permeability
Año:2019
Volumen:208
Página de inicio:221
Página de fin:231
DOI: http://dx.doi.org/10.1016/j.carbpol.2018.12.030
Título revista:Carbohydrate Polymers
Título revista abreviado:Carbohydr Polym
ISSN:01448617
CODEN:CAPOD
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_01448617_v208_n_p221_OchoaYepes

Referencias:

  • Aaslyng, M.D., Larsen, L.M., Nielsen, P.M., The influence of maturation on flavor and chemical composition of hydrolyzed soy protein produced by acidic and enzymatic hydrolysis (1999) Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 208 (5-6), pp. 355-361
  • Acosta, S., Chiralt, A., Santamarina, P., Rosello, J., González-Martínez, C., Cháfer, M., Antifungal films based on starch-gelatin blend, containing essential oils (2016) Food Hydrocolloids, 61, pp. 233-240
  • Alam, M.S., Pathania, S., Sharma, A., Optimization of the extrusion process for development of high fibre soybean-rice ready-to-eat snacks using carrot pomace and cauliflower trimmings (2016) LWT-Food Science and Technology, 74, pp. 135-144
  • (1995), Official methods of analysis. Washington, DC: Official Methods of A nalysis. Association of Official Analytical Chemists. 934.05 - 17ed; (1996), ASTM E96–00. Standard test methods for Water vapor transmission of materials, American Society for Testing and Materials Philadelphia; Azevedo, V.M., Borges, S.V., Marconcini, J.M., Yoshida, M.I., Neto, A.R.S., Pereira, T.C., Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion (2017) Carbohydrate Polymers, 157, pp. 971-980
  • Balqis, A.I., Khaizura, M.N., Russly, A.R., Hanani, Z.N., Effects of plasticizers on the physicochemical properties of kappa-carrageenan films extracted from Eucheuma cottonii (2017) International Journal of Biological Macromolecules, 103, pp. 721-732
  • Bamdad, F., Goli, A.H., Kadivar, M., Preparation and characterization of proteinous film from lentil (Lens culinaris): Edible film from lentil (Lens culinaris) (2006) Food Research International, 39 (1), pp. 106-111
  • Barbana, C., Boye, J.I., In vitro protein digestibility and physico-chemical properties of flours and protein concentrates from two varieties of lentil (Lens culinaris) (2013) Food & Function, 4 (2), pp. 310-321
  • Basiak, E., Lenart, A., Debeaufort, F., Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch–whey protein blend edible films (2016) Journal of the Science of Food and Agriculture, 97 (3), pp. 858-867
  • Basiak, E., Lenart, A., Debeaufort, F., How glycerol and water contents affect the structural and functional properties of starch-based edible films (2018) Polymers, 10 (4), p. 412
  • Basú, M., Guha, A.K., Ray, L., Biosorptive removal of lead by lentil husk (2015) Journal of Environmental Chemical Engineering, 3 (2), pp. 1088-1095
  • Bourtoom, T., Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan (2008) Songklanakarin Journal of Science & Technology, p. 30
  • Cao, N., Fu, Y., He, J., Preparation and physical properties of soy protein isolate and gelatin composite films (2007) Food Hydrocolloids, 21 (7), pp. 1153-1162
  • Carbonaro, M., Maselli, P., Dore, P., Nucara, A., Application of fourier transform infrared spectroscopy to legume seed flour analysis (2008) Food Chemistry, 108 (1), pp. 361-368
  • Chang, C., Nickerson, M.T., Effect of protein and glycerol concentration on the mechanical, optical, and water vapor barrier properties of canola protein isolate-based edible films (2015) Food Science and Technology International, 21 (1), pp. 33-44
  • Chen, Y., Zhang, Z.Y., Ishikawa, Y., Maekawa, T., Mechanical properties and water resistance of an acetylated starch–based plastic (2002) Transactions of the ASAE, 45 (4), p. 1051
  • Chevalier, E., Assezat, G., Prochazka, F., Oulahal, N., Development and characterization of a novel edible extruded sheet based on different casein sources and influence of the glycerol concentration (2018) Food Hydrocolloids, 75, pp. 182-191
  • Condés, M.C., Añón, M.C., Dufresne, A., Mauri, A.N., Composite and nanocomposite films based on amaranth biopolymers (2018) Food Hydrocolloids, 74, pp. 159-167
  • da Silva, J.B., Pereira, F.V., Druzian, J.I., Cassava starch‐based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals (2012) Journal of Food Science, 77 (6), pp. N14-N19
  • De Lacey, A.L., López-Caballero, M.E., Montero, P., Agar films containing green tea extract and probiotic bacteria for extending fish shelf-life (2014) LWT-Food Science and Technology, 55 (2), pp. 559-564
  • Deng, J., Li, K., Harkin-Jones, E., Price, M., Karnachi, N., Kelly, A., Energy monitoring and quality control of a sigle screw extruder (2014) Applied Energy, 113, pp. 1775-1785
  • Detduangchan, N., Sridach, W., Wittaya, T., Enhancement of the properties of biodegradable rice starch films by using chemical crosslinking agents (2014) International Food Research Journal, 21 (3), p. 1189
  • dos Santos, K.C., Lopes, N.A., Costa, T.M.H., Brandelli, A., Rodrigues, E., Flôres, S.H., Characterization of active biodegradable films based on cassava starch and natural compounds (2018) Food Packaging and Shelf Life, 16, pp. 138-147
  • Etxabide, A., Coma, V., Guerrero, P., Gardrat, C., De La Caba, K., Effect of cross-linking in surface properties and antioxidant activity of gelatin films incorporated with a curcumin derivative (2017) Food Hydrocolloids, 66, pp. 168-175
  • Fakhouri, F.M., Costa, D., Yamashita, F., Martelli, S.M., Jesus, R.C., Alganer, K., Comparative study of processing methods for starch/gelatin films (2013) Carbohydrate Polymers, 95 (2), pp. 681-689
  • Famá, L., Goyanes, S., Gerschenson, L., Influence of storage time at room temperature on the physicochemical properties of cassava starch films (2007) Carbohydrate Polymers, 70 (3), pp. 265-273
  • Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Mechanical properties of tapioca-starch edible films containing sorbates (2005) LWT-Food Science and Technology, 38 (6), pp. 631-639
  • Famá, L., Rojo, P.G., Bernal, C., Goyanes, S., Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus (2012) Carbohydrate Polymers, 87 (3), pp. 1989-1993
  • Flores, S.K., Costa, D., Yamashita, F., Gerschenson, L.N., Grossmann, M.V., Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion (2010) Materials Science and Engineering: C, 30 (1), pp. 196-202
  • García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Research International, 42 (8), pp. 976-982
  • Gontard, N., Duchez, C., Cuq, J.L., Guilbert, S., Edible composite films of wheat gluten and lipids: Water vapour permeability and other physical properties (1994) International Journal of Food Science & Technology, 29 (1), pp. 39-50
  • González Seligra, P., Eloy Moura, L., Famá, L., Druzian, J.I., Goyanes, S., Influence of incorporation of starch nanoparticles in PBAT/TPS composite films (2016) Polymer International, 65 (8), pp. 938-945
  • González-Seligra, P., Guz, L., Ochoa-Yepes, O., Goyanes, S., Famá, L., Influence of extrusion process conditions on starch film morphology (2017) LWT-Food Science and Technology, 84, pp. 520-528
  • Guo, X., Lu, Y., Cui, H., Jia, X., Bai, H., Ma, Y., Factors affecting the physical properties of edible composite film prepared from zein and wheat gluten (2012) Molecules, 17 (4), pp. 3794-3804
  • Gutiérrez, T.J., Guzmán, R., Medina-Jaramillo, C., Famá, L., Effect of beet flour on films made from biological macromolecules: Native and modified plantain flour (2016) International Journal of Biological Macromolecules, 82, pp. 395-403
  • Guz, L., Famá, L., Candal, R., Goyanes, S., Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites (2017) Carbohydrate Polymers, 157, pp. 1611-1619
  • Hefnawy, T.H., Effect of processing methods on nutritional composition and anti-nutritional factors in lentils (Lens culinaris) (2011) Annals of Agricultural Sciences, 56 (2), pp. 57-61
  • Hernandez‐Izquierdo, V.M., Reid, D.S., McHugh, T.H., Berrios, D.J., Krochta, J.M., Thermal transitions and extrusion of glycerol‐plasticized whey protein mixtures (2008) Journal of Food Science, 73 (4), pp. 169-175
  • Jarpa-Parra, M., Bamdad, F., Wang, Y., Tian, Z., Temelli, F., Han, J., Optimization of lentil protein extraction and the influence of process pH on protein structure and functionality (2014) LWT-Food Science and Technology, 57 (2), pp. 461-469
  • Javed, A., Ullsten, H., Järnström, L., Ernstsson, M., Study of starch and starch-PVOH blends and effects of plasticizers on mechanical and barrier properties of coated paperboard (2016) Nordic Pulp & Paper Research Journal, 31 (3), pp. 499-510
  • Joshi, M., Aldred, P., McKnight, S., Panozzo, J.F., Kasapis, S., Adhikari, R., Physicochemical and functional characteristics of lentil starch (2013) Carbohydrate Polymers, 92 (2), pp. 1484-1496
  • Kačuráková, M., Capek, P., Sasinková, V., Wellner, N., Ebringerová, A., FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses (2000) Carbohydrate Polymers, 43 (2), pp. 195-203
  • Kaddour, A.A., Mondet, M., Cuq, B., Description of chemical changes implied during bread dough mixing by FT-ATR mid-infrared spectroscopy (2008) Cereal Chemistry Journal, 85 (5), pp. 673-678
  • Kaewtatip, K., Thongmee, J., The effects of cross-linked starch on the properties of thermoplastic starch (2013) Materials & Design, 45, pp. 586-589
  • Kamper, S.L., Fennema, O., Water vapor permeability of edible bilayer films (1984) Journal of Food Science, 49 (6), pp. 1478-1481
  • Karbowiak, T., Hervet, H., Léger, L., Champion, D., Debeaufort, F., Voilley, A., Effect of plasticizers (water and glycerol) on the diffusion of a small molecule in iota-carrageeenan biopolymer films for edible coating application (2006) Biomacromolecules, 7, pp. 2011-2019
  • Kowalczyk, D., Kordowoska-Wiater, M., Nowak, J., Baraniak, B., Characterization of films based on chitosan lactate and his blends with oxidized starch and gelatin (2015) International Journal of Biological Macromolecules, 77, pp. 350-359
  • Krumova, M., Lopez, D., Benavente, R., Mijangos, C., Pereña, J.M., Effect of crosslinking on the mechanical and thermal properties of poly (vinyl alcohol) (2000) Polymer, 41 (26), pp. 9265-9272
  • Li, J.Y., Yeh, A.I., Fan, K.L., Gelation characteristics and morphology of corn starch/soy protein concentrate composites during heating (2007) Journal of food engineering, 78 (4), pp. 1240-1247
  • Lu, Z.H., Donner, E., Yada, R.Y., Liu, Q., Physicochemical properties and in vitro starch digestibility of potato starch/protein blends (2016) Carbohydrate Polymers, 154, pp. 214-222
  • Ma, X., Yu, J., Kennedy, J.F., Studies on the properties of natural fibers-reinforced thermoplastic starch composites (2005) Carbohydrate Polymers, 62 (1), pp. 19-24
  • Madhumitha, G., Fowsiya, J., Mohana Roopan, S., Thakur, V.K., Recent advances in starch–clay nanocomposites (2018) International Journal of Polymer Analysis and Characterization, 23 (4), pp. 331-345
  • Mali, S., Grossmann, M.V.E., Yamashita, F., Filmes de amido: Produção, propriedades e potencial de utilização (2010) Semina: Ciências Agrárias, 31 (1), pp. 137-156
  • Mali, S., Grossmann, M.V.E., García, M., Martino, M., Zaritzky, N., Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources (2006) Journal of Food Engineering, 75, pp. 453-460
  • Maran, J.P., Sivakumar, V., Sridhar, R., Thirugnanasambandham, K., Development of model for barrier and optical properties of tapioca starch based edible films (2013) Carbohydrate polymers, 92 (2), pp. 1335-1347
  • Mariani, P.D.S.C., Allganer, K., Oliveira, F.B., Cardoso, E.J.B.N., Innocentini-Mei, L.H., Effect of soy protein isolate on the thermal, mechanical and morphological properties of poly (ε-caprolactone) and corn starch blends (2009) Polymer Testing, 28 (8), pp. 824-829
  • Mauri, A.N., Añón, M.C., Mechanical and physical properties of soy protein films with pH-modified microstructures (2008) Food Science and Technology International, 14 (2), pp. 119-125
  • Medina-Jaramillo, C., Gonzalez Seligra, P., Goyanes, S., Bernal, C., Famá, L., Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer (2015) Starch‐Stärke, 67 (9-10), pp. 780-789
  • Medina-Jaramillo, C., Ochoa-Yepes, O., Bernal, C., Famá, L., Active and smart biodegradable packaging based on starch and natural extracts (2017) Carbohydrate Polymers, 176, pp. 187-194
  • Morales, N.J., Candal, R., Famá, L., Goyanes, S., Rubiolo, G.H., Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement (2015) Carbohydrate Polymers, 127, pp. 291-299
  • Moreno, O., Atarés, L., Chiralt, A., Effect of the incorporation of antimicrobial/antioxidant proteins on the properties of potato starch films (2015) Carbohydrate Polymers, 133, pp. 353-364
  • Müller, C.M., Laurindo, J.B., Yamashita, F., Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films (2009) Food Hydrocolloids, 23 (5), pp. 1328-1333
  • Musso, Y.S., Salgado, P.R., Mauri, A.N., Smart edible films based on gelatin and curcumin (2017) Food Hydrocolloids, 66, pp. 8-15
  • Nanda, P.K., Lochan Nayak, P., Krishna Rao, K., Thermal degradation analysis of biodegradable plastics from urea-modified soy protein isolate (2007) Polymer-Plastics Technology and Engineering, 46 (3), pp. 207-211
  • Ochoa‐Yepes, O., Medina‐Jaramillo, C., Guz, L., Famá, L., Biodegradable and edible starch composites with fiber‐rich lentil flour to use as food packaging (2018) Starch‐Stärke, 70 (7-8)
  • Ogale, A.A., Cunningham, P., Dawson, P.L., Acton, J.C., Viscoelastic, thermal, and microstructural characterization of soy protein isolate films (2000) Journal of Food Science, 65 (4), pp. 672-679
  • Otoni, C.G., Avena‐Bustillos, R.J., Azeredo, H., Lorevice, M.V., Moura, M.R., Mattoso, L.H., Recent advances on edible films based on fruits and vegetables—A review (2017) Comprehensive Reviews in Food Science and Food Safety, 16 (5), pp. 1151-1169
  • Paes, S.S., Yakimets, I., Mitchell, J.R., Influence of gelatinization process on functional properties of cassava starch films (2008) Food Hydrocolloids, 22 (5), pp. 788-797
  • Parada, J., Aguilera, J.M., Microstructure, mechanical properties, and starch digestibility of a cooked dough made with potato starch and wheat gluten (2011) LWT-Food Science and Technology, 44 (8), pp. 1739-1744
  • Pavlath, A.E., Orts, W., Edible films and coatings: Why, what, and how? (2009) Edible films and coatings for food applications, pp. 1-23. , Springer New York, USA
  • Pelissari, F.M., Yamashita, F., Grossmann, M.V.E., Extrusion parameters related to starch/chitosan active films properties (2011) International Journal of Food Science & Technology, 46 (4), pp. 702-710
  • Pires, C., Ramos, C., Teixeira, B., Batista, I., Nunes, M.L., Marques, A., Hake proteins edible films incorporated with essential oils: Physical, mechanical, antioxidant and antibacterial properties (2013) Food Hydrocolloids, 30 (1), pp. 224-231
  • Primozic, M., Duchek, A., Nickerson, M., Ghosh, S., Effect of lentil proteins isolate concentration on the formation, stability and rheological behavior of oil-in-water nanoemulsions (2017) Food Chemistry, 237, pp. 65-74
  • Rodríguez-Castellanos, W., Martínez-Bustos, F., Rodrigue, D., Trujillo-Barragán, M., Extrusion blow molding of a starch–gelatin polymer matrix reinforced with cellulose (2015) European Polymer Journal, 73, pp. 335-343
  • Rogers, C.E., Transport through polymer membranes with a gradient of inhomogeneity (1965) In Journal of Polymer Science Part C: Polymer Symposia, 10 (1), pp. 93-102
  • Romani, V.P., Prentice-Hernández, C., Martins, V.G., Active and sustainable materials from rice starch, fish protein and oregano essential oil for food packaging (2017) Industrial Crops and Products, 97, pp. 268-274
  • Santacruz, S., Rivadeneira, C., Castro, M., Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant's hydrophobic tail and mechanical treatment (2015) Food Hydrocolloids, 49, pp. 89-94
  • Seligra, P.G., Jaramillo, C.M., Famá, L., Goyanes, S., Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent (2016) Carbohydrate polymers, 138, pp. 66-74
  • Serier, A., Aoufi, D., Developed of a new biodegradable packaging (2017) Advances in Materials and Processing Technologies, 3 (2), pp. 155-163
  • Shi, R., Bi, J., Zhang, Z., Zhu, A., Chen, D., Zhou, X., The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature (2008) Carbohydrate polymers, 74 (4), pp. 763-770
  • Su, B., Xie, F., Li, M., Corrigan, P.A., Yu, L., Li, X., Extrusion processing of starch film (2009) International Journal of Food Engineering, 5 (1). , Art. 7
  • Su, J.F., Yuan, X.Y., Huang, Z., Wang, X.Y., Lu, X.Z., Zhang, L.D., Physicochemical properties of soy protein isolate/carboxymethyl cellulose blend films crosslinked by Maillard reactions: Color, transparency and heat-sealing ability (2012) Materials Science and Engineering: C, 32 (1), pp. 40-46
  • Sun, Q., Sun, C., Xiong, L., Mechanical, barrier and morphological properties of pea starch and peanut protein isolate blend films (2013) Carbohydrate Polymers, 98 (1), pp. 630-637
  • Sun, S., Liu, P., Ji, N., Hou, H., Dong, H., Effects of various cross-linking agents on the physicochemical properties of starch/PHA composite films produced by extrusion blowing (2018) Food Hydrocolloids, 77, pp. 964-975
  • Swanson, B.G., Pea and lentil protein extraction and functionality (1990) Journal of the American Oil Chemists’ Society, 67 (5), pp. 276-280
  • Teixeira, E.D.M., Curvelo, A.A., Corrêa, A.C., Marconcini, J.M., Glenn, G.M., Mattoso, L.H., Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid) (2012) Industrial Crops and Products, 37 (1), pp. 61-68
  • von Borries-Medrano, E., Jaime-Fonseca, M.R., Aguilar-Mendez, M.A., Starch–guar gum extrudates: Microstructure, physicochemical properties and in-vitro digestion (2016) Food Chemistry, 194, pp. 891-899
  • Wang, Y.Y., Ryu, G.H., Physicochemical and antioxidant properties of extruded corn grits with corn fiber by CO2 injection extrusion process (2013) Journal of Cereal Science, 58 (1), pp. 110-116
  • Wittaya, T., Protein-based edible films: Characteristics and improvement of properties. In structure and function of food engineering (2012), pp. 43-70. , InTech London, UK; Xie, Y., Chang, P.R., Wang, S., Yu, J., Ma, X., Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposita thunb. Starch composites (2011) Carbohydrate Polymers, 83 (1), pp. 186-191
  • Xie, M., Duan, Y., Li, F., Wang, X., Cui, X., Bacha, U., Preparation and characterization of modified and functional starch (hexadecyl corboxymethyl starch) ether using reactive extrusion (2017) Starch‐Stärke, 69 (5-6)
  • Yin, Y., Li, J., Liu, Y., Li, Z., Starch crosslinked with poly (vinyl alcohol) by boric acid (2005) Journal of Applied Polymer Science, 96 (4), pp. 1394-1397
  • Zepon, K.M., Vieira, L.F., Soldi, V., Salmoria, G.V., Kanis, L.A., Influence of process parameters on microstructure and mechanical properties of starch-cellulose acetate/silver sulfadiazine matrices prepared by melt extrusion (2013) Polymer Testing, 32 (6), pp. 1123-1127
  • Zheng, H., Ai, F., Chang, P.R., Huang, J., Dufresne, A., Structure and properties of starch nanocrystal‐reinforced soy protein plastics (2009) Polymer Composites, 30 (4), pp. 474-480
  • Zilli, D., Chiliotte, C., Escobar, M.M., Bekeris, V., Rubiolo, G.H., Cukierman, A.L., Magnetic properties of multi-walled carbon nanotube–epoxy composites (2005) Polymer, 46, pp. 6090-6095

Citas:

---------- APA ----------
Ochoa-Yepes, O., Di Giogio, L., Goyanes, S., Mauri, A. & Famá, L. (2019) . Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydrate Polymers, 208, 221-231.
http://dx.doi.org/10.1016/j.carbpol.2018.12.030
---------- CHICAGO ----------
Ochoa-Yepes, O., Di Giogio, L., Goyanes, S., Mauri, A., Famá, L. "Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films" . Carbohydrate Polymers 208 (2019) : 221-231.
http://dx.doi.org/10.1016/j.carbpol.2018.12.030
---------- MLA ----------
Ochoa-Yepes, O., Di Giogio, L., Goyanes, S., Mauri, A., Famá, L. "Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films" . Carbohydrate Polymers, vol. 208, 2019, pp. 221-231.
http://dx.doi.org/10.1016/j.carbpol.2018.12.030
---------- VANCOUVER ----------
Ochoa-Yepes, O., Di Giogio, L., Goyanes, S., Mauri, A., Famá, L. Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydr Polym. 2019;208:221-231.
http://dx.doi.org/10.1016/j.carbpol.2018.12.030