Artículo

Gassmann, M.I.; Tonti, N.E.; Burek, A.; Pérez, C.F."Estimation of evapotranspiration of a salt marsh in southern South America with coupled Penman-Monteith and surface resistance models" (2019) Agricultural and Forest Meteorology. 266-267:109-118
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

One of the most recommended method to estimate evapotranspiration (ET) of vegetated surfaces with different soil moisture conditions is the Penman-Monteith equation (PM). Canopy and soil conditions are parameterized through the surface resistance or conductance, while the contribution of the canopy to ET is measured by the canopy resistance. The study of natural ecosystems has gained interest because of its importance in water and carbon cycles. However, unlike monocultures, natural environments are composed of a mixture of species that make the estimation of ET with PM troublesome. This feature makes them suitable for ET estimation considering the contribution of both, the canopy and the soil represented by the surface resistance (rs), or the contribution of the canopy, represented by the canopy resistance (rc). This work aims to model the surface and canopy resistances using conventional meteorological, biological and pedological variables observed at a salt marsh used for livestock production in Buenos Aires province, Argentina. Twelve models (M1 to M12) based on the net solar radiation (Rn), air temperature (Ta), air relative humidity (RH), surface wind velocity (U), dew point departure (Dp), aerodynamic resistance (ra), leaf area index (LAI) and volumetric soil water content (ϑs) were obtained using two different regression methodologies. Surface resistances during daytime were calculated inverting the PM equation with ET fluxes measured with the eddy covariance method. PM-derived rs varied between 20 and 1000 s m−1, with a median of 137 s m−1. From 1620 observations, 468 were used for model calibration while 1152 for model validation. M5 and M11 with Rn, RH, ra, LAI predictor variables were the best models with 80.8 s m−1 root mean square error, 0.51 determination coefficient, 0.69 and 0.65 index of agreement, respectively. The modelled resistances allowed the estimation of latent heat fluxes with a root mean quadratic error varying from 60.7 to 69.5 W m-2. These results show the possibility to achieve rs from a minimum set of variables easily measured in the field which in turn, allows to estimate the ET of salt marsh ecosystems with scarce meteorological information. © 2018 Elsevier B.V.

Registro:

Documento: Artículo
Título:Estimation of evapotranspiration of a salt marsh in southern South America with coupled Penman-Monteith and surface resistance models
Autor:Gassmann, M.I.; Tonti, N.E.; Burek, A.; Pérez, C.F.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos, Av. Intendente Güiraldes 2160, Piso 2, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
CONICET, Av. Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
Palabras clave:Argentina; Coupled model; Eddy covariance; Spartina; air temperature; dew point; eddy covariance; estimation method; evapotranspiration; leaf area index; livestock farming; Penman-Monteith equation; relative humidity; saltmarsh; soil moisture; soil water; solar radiation; wind velocity; Argentina; Buenos Aires [Argentina]; South America; Spartina
Año:2019
Volumen:266-267
Página de inicio:109
Página de fin:118
DOI: http://dx.doi.org/10.1016/j.agrformet.2018.12.003
Handle:http://hdl.handle.net/20.500.12110/paper_01681923_v266-267_n_p109_Gassmann
Título revista:Agricultural and Forest Meteorology
Título revista abreviado:Agric. For. Meterol.
ISSN:01681923
CODEN:AFMEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681923_v266-267_n_p109_Gassmann

Referencias:

  • Alfieri, J.G., Niyogi, D., Blanken, P.D., Chen, F., LeMone, M.A., Mitchell, K.E., Ek, M.B., Kumar, A., Estimation of the minimum canopy resistance for croplands and grasslands using data from the 2002 international H2O project (2008) Mon. Weather Rev., 136, pp. 4452-4469
  • Aliaga, V.S., Ferrelli, F., Alberdi-Algañaraz, E.D., Bohn, V.Y., Piccolo, M.C., Distribución y variabilidad de la precipitación en la región pampeana, Argentina (2016) Cuadernos de Investigación Geográfica, 42, pp. 261-280
  • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration (2006), p. 174; Amer, K.H., Hatfield, J.L., Canopy Resistance As Affected by Soil and Meteorological Factors in Potato (2004), p. 1342. , http://digitalcommons.unl.edu/usdaarsfacpub/1342, Publications from USDA-ARS / UNL Faculty; Artigas, F., Shin, J.Y., Hobble, C., Marti-Donati, A., Schäfer, K.V.R., Pechmann, I., Long term carbon storage potential and CO2 sink strength of a restored salt marsh in New Jersey (2015) Agric. For. Meteorol., 200, pp. 313-321
  • Baldocchi, D.D., Luxmoore, R.J., Hatfield, J.L., Discerning the forest from the trees: an essay on scaling canopy stomatal conductance (1991) Agric. For. Meteorol., 54, pp. 197-226
  • Bohren, C.F., Albrecht, B.A., Atmospheric Thermodynamics (1998), p. 402. , Oxford University Press UK; Bonneville, M.C., Strachan, I., Humphreys, E., Roulet, T., Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties (2008) Agric. For. Meteorol., 148, pp. 69-81
  • Breuer, H., Ács, F., Surface resistance estimation of some crops using different climate, soil-, and vegetation-specific data (2010) Idojárás, 114 (3), pp. 203-215
  • Bromberg Gedan, K., Silliman, B.R., Bertness, M.D., Centuries of human-driven change in salt marsh ecosystem (2009) Ann. Rev. Mar. Sci., 1, pp. 117-141
  • Cabrera, A.L., (1968) Vegetación de la Provincia de Buenos Aires. Flora de la Provincia de Buenos Aires, parte I, pp. 101-123. , A.L. Cabrera Colección Científica del INTA Buenos Aires, Argentina
  • Cabrera, A.L., Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería (1976), p. 85. , ACME. T. II Buenos Aires, Argentina; Campbell, G.S., Norman, J.M., An Introduction to Environmental Biophysics (1998), p. 286. , 2nd edition Springer Sciences & Business Media, Inc. USA; Campbell, D.I., Williamson, J.L., Evaporation from a raised peat bog (1997) J. Hydrol., 193, pp. 142-160
  • Cherry, J.A., Ecology of wetlands ecosystems: water, substrate, and life (2011) Nat. Educ. Knowl., 3, pp. 10-16
  • Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., Lynch, J.C., Global carbon sequestration in tidal, saline wetland soils (2003) Glob. Biogeochem. Cy., 17 (4). , 22-1, 22-12
  • Collatz, G.J., Ball, J.T., Grivet, C., Berry, J.A., Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer (1991) Agric. For. Meteorol., 54, pp. 107-136
  • Dirks, B.O., Hensen, A., Surface conductance and energy exchange in an intensively managed peat pasture (1999) Clim. Chang. Res. Lett., 12, pp. 29-37
  • Djaman, K., Irmak, S., Rathje, W.R., Martin, D.L., Eisenhauer, D.E., Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation (2013) Trans. ASABE, 56 (2), pp. 273-293
  • Dušek, J., Čížková, H., Stellner, R., Czerný, R., Květ, J., Fluctuating water table affects gross ecosystem production and gross radiation use efficiency in a sedge-grass marsh (2012) Hydrobiologia, 692, pp. 57-66
  • Eamus, D., Huete, A., Yu, Q., Vegetation Dynamics: A Synthesis of Plant Ecophysiology, Remote Sensing and Modelling (2016), p. 517. , Cambridge University Press USA; Foken, T., Der Bayreuther Turbulenzknecht. Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol (1999); Foken, T., Micrometeorology (2008), p. 306. , Springer Verlag Berlin; Foken, T., Aubinet, M., Leuning, R., The eddy covariance method (2012) Eddy Covariance, A Practical Guide to Measurement and Data Analysis, pp. 1-20. , M. Aubinet T. Vesala D. Paple Springer Verlag
  • Foken, T., Leuning, R., Oncley, S.R., Mauder, M., Aubinet, M., Corrections and data quality control (2012) Eddy Covariance, A Practical Guide to Measurement and Data Analysis, pp. 85-132. , M. Aubinet T. Vesala D. Paple Springer Verlag
  • Gassmann, M.I., Gardiol, J.M., Serio, L.A., Performance evaluation of evapotranspiration estimations at a model of soil water balance (2011) Meteorol. Appl., 118 (2), pp. 211-222
  • Henderson-Sellers, B., A new formula for latent heat of vaporization of water as a function of temperature (1984) Q. J. R. Meteorol. Soc., 110, pp. 1186-1190
  • Hillel, D., Environmental Soil Physics. Chapter 9: Movements of Solute and Soil Salinity (1998), p. 771. , Academic Press; Hollins, S., Ridd, P.V., Evaporation over a tropical tidal salt flat (1997) Mangroves Salt Marshes, 1, pp. 95-102
  • Howes, B.L., Goehringer, D.D., Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a New England salt marsh (1994) Mar. Ecol. Prog. Ser., 114, pp. 289-301
  • Hughes, C.E., Kalma, J.D., Binning, P., Willgoose, G.R., Vertzonis, M., Estimating evapotranspiration for a temperate salt marsh, Newcastle, Australia (2001) Hydrol. Process., 15, pp. 957-975
  • Irmak, S., Mutiibwa, D., On the dynamics of canopy resistance: generalized linear estimation and relationships with primary micrometeorological variables (2010) Water Resour. Res., 46, p. 20. , W08526
  • Jarvis, P.G., McNaughton, K.G., Stomatal control of transpiration: scaling up from leaf to region (1986) Adv. Ecol. Res., 15, pp. 1-49
  • Jones, H., Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology (2013), p. 407. , 3rd edition Cambridge University Press Cambridge; Kelliher, F.M., Leuning, R., Raupach, M.R., Schulze, E.D., Maximum conductances for evaporation from global vegetation types (1995) Agric. For. Meteorol., 73, pp. 1-16
  • Knyazikhin, Y., Glassy, J., Privette, J.L., Tian, Y., Lotsch, A., Zhang, Y., Wang, Y., Running, S.W., MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15) Algorithm, Theoretical Basis Document (1999), NASA Goddard Space Flight Center Greenbelt, MD 20771, USA; León, R.J.C., Setting and vegetation (1991) Natural Grassland: Introduction and Western Hemisphere, pp. 380-387. , R.T. Coupland Elsevier Amsterdam
  • Leuning, R., A critical appraisal of a combined stomatal-photosynthesis model for C3 plants (1995) Plant Cell Environ., 18, pp. 339-355
  • Leuning, R., Zhang, Y.Q., Rajaud, A., Cleugh, H., Tu, K., A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation (2008) Water Resour. Res., 44, p. W10419
  • Li, S., Hao, X., Du, T., Tong, L., Zhang, J., Kang, S., A coupled surface resistance model to estimate crop evapotranspiration in arid region of northwest China (2014) Hydrol. Process., 28, pp. 2312-2323
  • Li, S., Zhang, L., Kang, S., Tong, L., Du, T., Hao, X., Zhao, P., Comparison of several surface resistance models for estimating crop evapotranspiration over the entire growing season in arid regions (2015) Agric. For. Met., 208, pp. 1-15
  • Mauder, M., Foken, T., Eddy-Covariance Software TK3 [Data set]. Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 (update) (2015), University of Bayreuth Bayreuth, Germany; Moffett, K.B., Wolf, A., Berry, J.A., Gorelick, S.M., Salt marsh–atmosphere exchange of energy, water vapor, and carbon dioxide: effects of tidal flooding and biophysical controls (2010) Water Resour. Res., 46
  • Monteith, J.L., Evaporation and the environment (1965) 19th Symposia of the Society for Experimental Biology, 19, pp. 205-234
  • Monteith, J., Unsworth, M., Principles of Environmental Physics (2008), p. 418. , 3rd edition Elsevier; Murray, B.C., Linwood, P., Jenkins, W.A., Sifleet, S., Green Payments for Blue Carbon Economic Incentives for Protecting Threatened Coastal Habitats. Nicholas Institute for Environmental Policy Solutions Report (2011), NI_R_11-04; Nash, J.E., Sutcliffe, J.V., River flow forecasting through conceptual models, part I – a discussion of principles (1970) J. Hydrol., 10 (3), pp. 282-290
  • Oke, T.R., Boundary Layer Climates (1987), p. 435. , 2nd edition Methuen Publishers Lagos; Penman, H.L., Natural evaporation from open water, bare soil and grass (1948) Proc. R. Soc. Lond. A, 194, pp. 120-145
  • Pérez, C.F., Latorre, F., Stutz, S., Pastorino, S., A two-year report of pollen influx into Tauber traps in Mar Chiquita coastal lagoon, Buenos Aires, Argentina (2009) Aerobiologia, 25, pp. 167-181
  • Polhamus, A., Fisher, J.B., Tu, K.P., What controls the error structure in evapotranspiration models? (2013) Agric. For. Meteorol., 169, pp. 12-24
  • Priestley, C.H.B., Taylor, R.J., On the assessment of surface heat flux and evaporation using large-scale parameters (1972) Mon. Weather Rev., 100, pp. 81-92
  • Saxton, K.E., Rawls, W.J., Soil water characteristics estimates by texture and organic matter for hydrologic solutions (2006) Soil Sci. Soc. Am. J., 70, pp. 1569-1578
  • Shuttleworth, W.J., Wallace, J.S., Evaporation from sparse crops‐an energy combination theory (1985) Q. J. R. Meteorol. Soc., 111 (469), pp. 839-855
  • Souch, C., Wolfe, C.P., Grimmond, C.S.B., Wetland evaporation and energy partitioning: indiana Dunes National Lakeshore (1996) J. Hydrol., 184, pp. 189-208
  • Stutz, S., Vegetación del área de la laguna de Mar Chiquita (2001) Reserva de Biósfera Mar Chiquita: Características físicas, biológicas y ecológicas, p. 319. , Iribarne En O Editorial Martín, Mar del Plata, Argentina Buenos Aires, Argentina
  • Subedi, A., y Chávez, J.L., Crop evapotranspiration (ET) estimation models: a review and discussion of the applicability and limitations of ET methods (2015) J. Agric. Sci., 7 (6), p. 50
  • Thornthwaite, C.W., An approach towards a rational classification of climate (1948) Geogr. Rev., 38, pp. 55-94
  • Todorovic, M., Single-layer evapotranspiration model with variable canopy resistance (1999) J. Irrig. Drain. E. ASAE, 125 (5), pp. 235-245
  • Tonti, N.E., Estudio de los flujos turbulentos de energía y masa a través del uso de la metodología de covarianzas turbulentas sobre un ecosistema de marisma (2016), http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_5959_Tonti.pdf, PHD Thesis Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires 2016-03-30; Tonti, N.E., Gassmann, M.I., Covi, M., Pérez, C.F., Righetti, S., Balance de energía sobre un cultivo de soja (2013) Ciencia y Natura, pp. 305-307. , December
  • Tonti, N.E., Gassmann, M.I., Pérez, C.F., First results of energy and mass exchange in a salt marsh on southeastern South America (2018) Agric. Forest Met., 263, pp. 59-68
  • Tsonis, A.A., An Introduction to Atmospheric Thermodynamics (2007), p. 187. , Cambridge University Press; United States Department of Agriculture, Part 630 Hydrology. National Engineering Handbook Natural Resources Conservation Service (1973), https://directives.sc.egov.usda.gov/viewerFS.aspx?hid=21422; United States Department of Agriculture, Keys to soil taxonomy (2010) Natural Resources Conservation Service, p. 337. , 11th edition USDA USA
  • Verhoef, A., Allen, S.J., De Bruin, H.A.R., Jacobs, C.M.J., Heusinkveld, B.G., Fluxes of carbon dioxide and water vapour from a Sahelian savanna (1996) Agric. For. Meteorol., 80, pp. 231-248
  • Vervoorst, F., La vegetación de la República Argentina VII. Las comunidades vegetales de la Depresión del Salado (Provincia de Buenos Aires) (1967), p. 262. , INTA Serie Fitogeográfica 7. Buenos Aires, Argentina; Wilks, D.S., Statistical methods in the atmospheric sciences (2011) International Geophysics Series, 100, p. 676. , 3rd edition Academic Press
  • Willmott, C.J., Some comments on the evaluation of model performance (1982) B. Am. Meteorol. Soc., 63 (11), pp. 1309-1313
  • Willmott, C.J., Robeson, S.M., Matsuura, K., Short Communication: a refined index of model performance (2012) Int. J. Climatol., 32, pp. 2088-2094
  • Wyngaard, J.C., Measurements physics (1986) Probing the Atmospheric Boundary Layer, pp. 5-18. , D.H. Lenschow American Meteorological Society Boston Massachusetts
  • Xiao, J., Sunb, G., Chenc, J., Chene, H., Chen, S., Dong, G., Gao, S., Zhou, J., Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China (2013) Agric. For. Meteorol., 182-183, pp. 76-90
  • Xu, C.Y., Chen, D., Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany (2005) Hydrol. Process., 19, pp. 3717-3734
  • Zhao, W.Z., Ji, X.B., Kang, E.S., Zhang, Z.H., Jin, B.W., Evaluation of Penman-Monteith model applied to a maize field in the arid area of northwest China (2010) Hydrol. Earth Syst. Sci. Discuss., 14, pp. 1353-1364

Citas:

---------- APA ----------
Gassmann, M.I., Tonti, N.E., Burek, A. & Pérez, C.F. (2019) . Estimation of evapotranspiration of a salt marsh in southern South America with coupled Penman-Monteith and surface resistance models. Agricultural and Forest Meteorology, 266-267, 109-118.
http://dx.doi.org/10.1016/j.agrformet.2018.12.003
---------- CHICAGO ----------
Gassmann, M.I., Tonti, N.E., Burek, A., Pérez, C.F. "Estimation of evapotranspiration of a salt marsh in southern South America with coupled Penman-Monteith and surface resistance models" . Agricultural and Forest Meteorology 266-267 (2019) : 109-118.
http://dx.doi.org/10.1016/j.agrformet.2018.12.003
---------- MLA ----------
Gassmann, M.I., Tonti, N.E., Burek, A., Pérez, C.F. "Estimation of evapotranspiration of a salt marsh in southern South America with coupled Penman-Monteith and surface resistance models" . Agricultural and Forest Meteorology, vol. 266-267, 2019, pp. 109-118.
http://dx.doi.org/10.1016/j.agrformet.2018.12.003
---------- VANCOUVER ----------
Gassmann, M.I., Tonti, N.E., Burek, A., Pérez, C.F. Estimation of evapotranspiration of a salt marsh in southern South America with coupled Penman-Monteith and surface resistance models. Agric. For. Meterol. 2019;266-267:109-118.
http://dx.doi.org/10.1016/j.agrformet.2018.12.003