Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


The preparation and characterization of superhydrophobic membranes formed on metal meshes (brass and bronze) by coating from stearic acid is presented. The membranes were prepared by two methods: electrolysis and acid etching. The electrolysis process is a one-step method performed by anodizing the mesh in ethanol solutions of stearic acid. Stearic acid concentration, support electrolyte concentration and electrolysis time were systematically varied. Nanostructures, including nanotubes, are induced on the metallic filaments. Analysis by FTIR, XRD, XPS and SEM of surfaces and precipitated material indicate that formed nanostructures are assemblies of metallic stearates on the surface (copper and/or zinc stearates). Superhydrophobicity (contact angles larger than 150°) was only achieved (in the electrolysis method) in cases where the formation of nanotubes was observed. On the other hand, the acid etching process is a two-step method: immersion of the meshes in acid solution of CuCl 2 or FeCl 3 , oxidizing the surface with formation of inorganic salts nano crystals, followed by immersion in stearic acid solution. Organic nanostructures (nanoribbons and/or nanopetals) were observed after the second step. Superhydrophobic surfaces (contact angles between 150 and 170°) were obtained for all the membranes. Both kind of membranes (electrolysis and etching) resulted effective in oil-water separation. © 2018


Documento: Artículo
Título:Superhydrophobic brass and bronze meshes based on electrochemical and chemical self-assembly of stearate
Autor:Sosa, M.D.; Lombardo, G.; Rojas, G.; Oneto, M.E.; Negri, R.M.; D'Accorso, N.B.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Argentina
CONICET – Universidad de Buenos Aires, Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE-), Argentina
YPF Tecnología (Y-TEC), Av. del Petróleo s/n -(Entre 129 y 143) Berisso, Buenos Aires, 1923, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
Palabras clave:Electrolysis; Metallic mesh; Organic nanotubes; Stearate nanostructures; Superhydrophobicity; Brass; Bronze; Chlorine compounds; Copper compounds; Electrolysis; Electrolytes; Etching; Iron compounds; Mesh generation; Metals; Nanoribbons; Nanotubes; Self assembly; Stearic acid; Yarn; Acid etching process; Electrolysis process; Electrolyte concentration; Metallic mesh; Oil water separation; Organic nanostructures; Super-hydrophobic surfaces; Superhydrophobicity; Hydrophobicity
Página de inicio:116
Página de fin:124
Título revista:Applied Surface Science
Título revista abreviado:Appl Surf Sci


  • Wen, L., Tian, Y., Jiang, L., Bioinspired super-wettability from fundamental research to practical applications (2015) Angew. Chem. Int. Ed., 54, pp. 3387-3399
  • Xue, Z., Wang, S., Lin, L., Chen, L., Liu, M., Feng, L., Jiang, L., A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation (2011) Adv. Mater., 23, pp. 4270-4273
  • Farhadi, S., Farzaneh, M., Kulinich, S.A., Anti-icing performance of superhydrophobic surfaces (2011) Appl. Surf. Sci., 257, pp. 6264-6269
  • Huang, Y., Sarkar, D.K., Gallant, D., Chena, X.-G., Corrosion resistance properties of superhydrophobic copper surfaces fabricated by one-step electrochemical modification process (2013) Appl. Surface Sci., 282, pp. 689-694
  • Zheng, X., Guo, Z., Tian, D., Zhang, X., Jiang, L., Electric field induced switchable wettability to water on the polyaniline membrane and oil/water separation (2016) Adv. Mater. Interfaces., 3, p. 1600461
  • Wang, N., Xiong, D., Deng, Y., Shi, Y., Wang, K., Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties (2015) ACS Appl. Mater. Interfaces., 7, pp. 6260-6272
  • Na, X., Sarkar, D.K., Chen, X.-G., Zhang, H., Tong, W., Superhydrophobic copper stearate/copper oxide thin films by a simple one-step electrochemical process and their corrosion resistance properties (2016) RSC Adv., 6, pp. 35466-35478
  • Shirtcliffe, N.J., McHale, G., Atherton, S., Newton, M.I., An introduction to superhydrophobicity (2010) Adv. Colloid Interface Sci., 161
  • Barthlott, W., Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces (1997) C. Planta, 202, pp. 1-8
  • Tian, Y., Bin, S., Jiang, L., Interfacial material system exhibiting superwettability (2014) Adv. Mater., 26, pp. 6872-6897
  • Chen, L., Wua, F., Lia, Y., Wanga, Y., Sia, L., Leea, K.I., Feia, B., Robust and elastic superhydrophobic breathable fibrous membrane with in situ grown hierarchical structures (2018) J. Membr. Sci., pp. 93-98
  • Long, M., Peng, S., Deng, W., Yang, X., Miao, K., Wen, N., Miao, X., Deng, W., , pp. 18-27. , Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane, J. Colloid Interface Sci. 508 (n.d.). doi; Feng, L., Zhang, H., Mao, P., Wang, Y., Ge, Y., Superhydrophobic alumina surface based on stearic acid modification (2011) Appl. Surf. Sci., 257, pp. 3959-3963
  • Liu, Y., Zhang, K., Yao, W., Liu, J., Han, Z., Ren, L., Bioinspired structured superhydrophobic and superoleophilic stainless steel mesh for efficient oil-water separation (2016) Colloids Surface A: Physicochem. Eng. Aspects., 500, pp. 54-63
  • Liu, Y., Bai, Y., Jin, J., Tian, L., Han, Z., Ren, L., Facile fabrication of biomimetic superhydrophobic surface with anti-frosting on stainless steel substrate (2015) Appl. Surf. Sci., 355, pp. 1238-1244
  • Tuo, Y., Chen, W., Zhang, H., Li, P., Liu, X., One-step hydrothermal method to fabricate drag reduction superhydrophobic surface on aluminum foil (2018) Appl. Surf. Sci.
  • Reverdy, C., Belgacem, N., Moghaddam, M.S., Sundin, M., One-step superhydrophobic coating using hydrophobized cellulose nanofibrils (2017) Colloids Surf., A, 544, pp. 152-158
  • Zhang, F., Qian, H., Wang, L., Wang, Z., Cuiwei, D., Li, X., Zhang, D., Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying (2017) Surf. Coat. Technol., 351, pp. 15-23
  • Huang, Y., Sarkar, D.K., Chen, X.-G., A one-step process to engineer superhydrophobic copper surfaces (2010) Mater. Lett, 64, pp. 2722-2724
  • Liji Sobhana, S.S., Zhang, X., Kesavan, L., Liias, P., Fardim, P., Layered double hydroxide interfaced stearic acid – Cellulose fibres: A new class of super-hydrophobic hybrid materials (2017) Colloids Surface A: Physicochem. Eng. Aspects, 522, pp. 416-424
  • Cao, M., Luo, X., Ren, H., Feng, J., Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation (2018) J. Colloid Interface Sci., 512, pp. 567-574
  • Lai, H.Y., de Leon, A., Pangilinan, K., Advincula, R., Superoleophilic and under-oil superhydrophobic organogel coatings for oil and water separation (2018) Prog. Org. Coat., 115, pp. 122-129
  • Rahman, M.A., Gosh, A.K., Bose, R.N., Dissociation constants of long chain fatty acids in methanol-water and ethanol-water mixtures (1979) J. Chem. Technol. Biotechnol., 29, pp. 158-162
  • Satake, I., Matuura, R., Studies with copper (II) soaps (1961) Kolloid-Zeitschrift., 176
  • Hirano, K., Aoyagi, M., Ishido, T., Ooie, T., Frusawa, H., Asakawa, M., Shimizu, T., Ishikawa, M., Measuring the length distribution of self-assembled lipid nanotubes by orientation control with a high-frequency alternating current electric field in aqueous solutions (2009) Anal. Chem., 81, pp. 1459-1464
  • Masuda, M., Shimizu, T., Lipid nanotubes and microtubes: experimental evidence for unsymmetrical monolayer membrane formation from unsymmetrical bolaamphiphiles (2004) Langmuir, 20, pp. 5969-5977
  • Kogiso, M., Zhou, Y., Shimizu, T., Instant preparation of self-assembled metal-complexed lipid nanotubes that act as templates to produce metal oxide nanotubes (2007) Adv. Mater., 19, pp. 242-246
  • Zhang, L., Li, H., Sik Ha, C., Suh, H., Kim, I., Fabrication of nanotubules and microspheres from the self-assembly of amphiphilic monochain stearic acid derivatives (2010) Langmuir, 26, pp. 17890-17895
  • Shimizu, T., Masuda, M., Minamikawa, H., Supramolecular nanotube architectures based on amphiphilic molecules (2005) ACS Chem. Rev., 105, pp. 1401-1443
  • Wang, S., Feng, L., Jiang, L., One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces (2006) Adv. Mater., 18, pp. 767-770
  • Xu, J., Xu, J., Cao, Y., Ji, X., Yan, Y., Fabrication of non-flaking, superhydrophobic surfaces using a one-step solution-immersion process on copper foams (2013) Appl. Surf. Sci., 286, pp. 220-227
  • Pudney, P.D.A., Mutch, K.J., Zhu, S., Characterising the phase behaviour of stearic acid and its triethanolamine soap and acid–soap by infrared spectroscopy (2009) PCCP, 11, pp. 5010-5018


---------- APA ----------
Sosa, M.D., Lombardo, G., Rojas, G., Oneto, M.E., Negri, R.M. & D'Accorso, N.B. (2019) . Superhydrophobic brass and bronze meshes based on electrochemical and chemical self-assembly of stearate. Applied Surface Science, 465, 116-124.
---------- CHICAGO ----------
Sosa, M.D., Lombardo, G., Rojas, G., Oneto, M.E., Negri, R.M., D'Accorso, N.B. "Superhydrophobic brass and bronze meshes based on electrochemical and chemical self-assembly of stearate" . Applied Surface Science 465 (2019) : 116-124.
---------- MLA ----------
Sosa, M.D., Lombardo, G., Rojas, G., Oneto, M.E., Negri, R.M., D'Accorso, N.B. "Superhydrophobic brass and bronze meshes based on electrochemical and chemical self-assembly of stearate" . Applied Surface Science, vol. 465, 2019, pp. 116-124.
---------- VANCOUVER ----------
Sosa, M.D., Lombardo, G., Rojas, G., Oneto, M.E., Negri, R.M., D'Accorso, N.B. Superhydrophobic brass and bronze meshes based on electrochemical and chemical self-assembly of stearate. Appl Surf Sci. 2019;465:116-124.