Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


The Amazon basin constitutes the most developed rainforest in the world, accounting for 15-20% of the global freshwater input into the oceans. The low level flow over this region is climatologically dominated by the Atlantic anticycslone and the trade winds. This yields an incoming oceanic moist air to the continent from the East, which is forced to lift up over the Andes range at the West. The confluence of the entrance of humidity, heat, evaporation and strong rainfall results in an accumulation of water vapor in this region. There is a statistically significant surplus of humidity over land as compared to over ocean (the largest difference is found during austral summer). This turns the Amazon basin into one of the most important heat sources for the tropical atmosphere, feeding a global pattern like the Atlantic Walker-type circulation, where the ascent stage is not over ocean but over land. The Global Positioning System radio occultation data show to be an excellent tool to observe the accumulated water vapor above the Amazon basin. © 2018 Elsevier B.V.


Documento: Artículo
Título:The Amazon basin as a moisture source for an Atlantic Walker-type Circulation
Autor:Hierro, R.; Llamedo, P.; de la Torre, A.; Alexander, P.
Filiación:CONICET/Facultad de Ingeniería, Universidad Austral, LIDTUA (CIC), Argentina
CONICET/Instituto de Física de Buenos Aires (IFIBA), Argentina
Palabras clave:Earth atmosphere; Meteorology; Andes ranges; Austral summers; Freshwater inputs; Global patterns; Heat sources; Moisture sources; Radio occultations; Tropical atmospheres; Water vapor; atmospheric moisture; GPS; heat source; humidity; Walker circulation; water vapor; Amazon Basin; Atlantic Ocean
Página de inicio:160
Página de fin:166
Título revista:Atmospheric Research
Título revista abreviado:Atmos. Res.


  • Alexander, P., de la Torre, A., Llamedo, P., Hierro, R., Precision estimation in temperature and refractivity profiles retrieved by GPS radio occultations (2014) J. Geophys. Res. Atmos., 119, pp. 8624-8638
  • Barry, R.G., Chorley, R.J., Atmosphere, Weather and Climate (2009), Routledge New York; Bjerknes, J., Atmospheric teleconnections from the equatorial Pacific (1969) Mon. Weather Rev., 97, pp. 163-172
  • Bonafoni, S., Biondi, R., The usefulness of the global navigation satellite systems (GNSS) in the analysis of precipitation events (2016) Atmos. Res., 167, pp. 15-23
  • Burgos Fonseca, Y., Alexander, P., de la Torre, A., Hierro, R., LLamedo, P., Calori, A., Comparison between GNSS ground-based and GPS radio occultation precipitable water observations over ocean-dominated regions (2018) Atmos. Res., 209, pp. 115-122
  • Calori, A., Santos, J., Blanco, M., Pessano, H., Ground-based GNSS network and integrated water vapor mapping during the development of severe storms at the Cuyo region (Argentina) (2016) Atmos. Res., 176-177, pp. 267-275
  • Chou, M.-D., Weng, C.-H., Lin, P.-H., Analysis of FORMOSAT-3/COSMIC humidity retrievals and comparisons with AIRS retrievals and NCEP/NCAR reanalysis (2009) J. Geophys. Res., 114, p. D00G03
  • do Nascimento, M.G., Herdies, D.L., Oliveira de Souza, D., The South American water balance: The influence of low-level jets (2016) J. Climate, 29, pp. 1429-1449
  • Hierro, R., Llamedo, P., de la Torre, A., Alexander, P., Rolla, A., Climatological patterns over South America derived from COSMIC radio occultation data (2012) J. Geophys. Res., 117
  • Hierro, R., Llamedo, P., de la Torre, A., Alexander, P., Oscillation modes of humidity over the Amazon basin derived from GPS RO profiles (2013) J. Geophys. Res., 118, pp. 13121-13127
  • Ho, S.-P., Zhou, X., Kuo, Y.-H., Hunt, D., Wang, J.-H., Global evaluation of radiosonde water vapor systematic biases using GPS radio occultation from COSMIC and ECMWF analysis (2010) Remote Sens., 2, pp. 1320-1330
  • Huang, C.Y., Teng, W.H., Ho, S.P., Kuo, Y.H., Global variation of cosmic precipitable water over land: Comparisons with ground-based gps measurements and ncep reanalyses (2013) Geophys. Res. Lett., 40, pp. 5327-5331
  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Joseph, D., The NCEP/NCAR 40-Year Reanalysis Project (1996) Bull. Amer. Meteor. Soc., 77, pp. 437-472
  • Kishore, M., Ratnam, V., Namboothiri, S.P., Velicogna, I., Ghouse Basha, J.H., Jiang, K.I., Rao, S.V.B., Sivakumar, V., Global (50S-50N) distribution of water vapor observed by COSMIC GPS RO: Comparison with GPS radiosonde, NCEP, ERA-Interim, and JRA-25 reanalysis data sets (2011) J. Atmos. Sol. Terr. Phys., 73, pp. 1849-1860
  • Kuleshov, Y., Choy, S., Fu, E.F., Chane-Ming, F., Liou, Y.-A., Pavelyev, A.G., Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques (2016) Atmos. Res., 176-177, pp. 276-289
  • Llamedo, P., Hierro, R., de la Torre, A., Alexander, P., ENSO-related moisture and temperature anomalies over South America derived from GPS radio occultation profiles (2016) Int. J. Climatol., 37, pp. 268-275
  • Nobre, C., Silva Dias, M., Culf, M., Alistair, D., Polcher, J., Gash, J., Marengo, J., Avissar, R., The Amazonian climate (2004) Vegetation, Water, Humans and the Climate, pp. 79-88. , P. Kabat et al. (eds.) Springer London
  • Oliveira, R., Maggioni, V., Vila, D., Morales, C., Characteristics and diurnal cycle of GPM rainfall estimates over the central Amazon region (2016) Remote Sens., 8, p. 544
  • Pettitt, A.N., A non-parametric approach to the change-point detection (1979) J. R. Statist. Soc. C, 28, pp. 126-135
  • Seidel, D.J., Water vapor: Distribution and trends (2002) Encyclopedia of Global Environmental Change, pp. 750-752. , Wiley New York
  • Teng, W.-H., Huang, C.-Y., Ho, S.-P., Kuo, Y.-H., Zhou, X.-J., Characteristics of global precipitable water in ENSO events revealed by COSMIC measurements (2013) J. Geophys. Res. Atmos., 118, pp. 8411-8425
  • Vergados, P., Mannucci, A.J., Ao, C.O., Verkhoglyadova, O., Iijima, B., Comparisons of the tropospheric specific humidity from GPS radio occultations with ERA-Interim, NASA MERRA, and AIRS data (2018) Atmos. Meas. Tech., 11, pp. 1193-1206
  • Wang, C., ENSO, Atlantic climate variability, and the Walker and Hadley circulations (2005) The Hadley Circulation: Present, Past and Future, pp. 173-202. , H.F. Diaz R.S. Bradley Kluwer New York


---------- APA ----------
Hierro, R., Llamedo, P., de la Torre, A. & Alexander, P. (2019) . The Amazon basin as a moisture source for an Atlantic Walker-type Circulation. Atmospheric Research, 216, 160-166.
---------- CHICAGO ----------
Hierro, R., Llamedo, P., de la Torre, A., Alexander, P. "The Amazon basin as a moisture source for an Atlantic Walker-type Circulation" . Atmospheric Research 216 (2019) : 160-166.
---------- MLA ----------
Hierro, R., Llamedo, P., de la Torre, A., Alexander, P. "The Amazon basin as a moisture source for an Atlantic Walker-type Circulation" . Atmospheric Research, vol. 216, 2019, pp. 160-166.
---------- VANCOUVER ----------
Hierro, R., Llamedo, P., de la Torre, A., Alexander, P. The Amazon basin as a moisture source for an Atlantic Walker-type Circulation. Atmos. Res. 2019;216:160-166.