Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Early detection and rapid response are essential to prevent invasive species from thriving in marine environments following their introduction. Species distribution models (SDMs) are widely used to predict the potential distribution of invasive species, providing excellent tools for the design of strategies to prevent or mitigate impacts of non-native species. Niche shifts are among the major drawbacks in the use of SDMs, leading scientists to formulate inaccurate predictions. In this work, we tested the performance of 3 different SDMs (Bioclim, Mahalanobis distance and Maxent) to predict the distribution of a niche-shifting invasive species using native data only. As a model organism, we used the neurotoxic sea-slug Pleurobranchaea maculata, which was recently introduced into the southwestern Atlantic, where it has undergone a niche shift. Our results show that Maxent outperforms the other modeling techniques in predicting the invasive distribution, but that Bioclim provides the most accurate outputs, minimizing over- and underpredictions. Our study strongly suggests that niche decomposition can provide important evidence for the underlying causes of niche shifts, aiding our understanding of why they occur and how they can be addressed by SDMs. This approach will improve the interpretation of SDMs in order to predict the potential spread of invasive species worldwide. © Inter-Research 2019

Registro:

Documento: Artículo
Título:Staying ahead of invaders: Using species distribution modeling to predict alien species’ potential niche shifts
Autor:Battini, N.; Farías, N.; Giachetti, C.B.; Schwindt, E.; Bortolus, A.
Filiación:Grupo de Ecología en Ambientes Costeros (GEAC), Puerto Madryn, 9120, Argentina
Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Puerto Madryn, 9120, Argentina
Facultad de Ciencias Exactas y Naturales (UBA), Buenos Aires, 1428, Argentina
Laboratorio de Invertebrados, FCEyN-UNMDP, Mar del Plata, 7602, Argentina
Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Mar del Plata, 7602, Argentina
Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), CONICET, Puerto Madryn, 9120, Argentina
Palabras clave:Ecological niche; Invasive species; Neurotoxins; Niche shift; Pleurobranchaea maculata; SDM; Species distribution; Opisthobranchia; Pleurobranchaea
Año:2019
Página de inicio:127
Página de fin:140
DOI: http://dx.doi.org/10.3354/meps12878
Título revista:Marine Ecology Progress Series
Título revista abreviado:Mar. Ecol. Prog. Ser.
ISSN:01718630
CODEN:MESED
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_01718630_v_n_p127_Battini

Referencias:

  • Acevedo, P., Jiménez-Valverde, A., Lobo, J.M., Real, R., Delimiting the geographical background in species distribution modelling (2012) J Biogeogr, 39, pp. 1383-1390
  • Araújo, M.B., Luoto, M., The importance of biotic interactions for modelling species distributions under climate change (2007) Glob Ecol Biogeogr, 16, pp. 743-753
  • Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E.A., De Clerck, O., Bio-Oracle v2.0: Extending marine data layers for bioclimatic modelling (2018) Glob Ecol Biogeogr, 27, pp. 277-284
  • Barbet-Massin, M., Rome, Q., Villemant, C., Courchamp, F., Can species distribution models really predict the expansion of invasive species? (2018) PLoS One, 13
  • Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., The crucial role of the accessible area in ecological niche modeling and species distribution modeling (2011) Ecol Model, 222, pp. 1810-1819. , others
  • Battini, N., Evaluando el riesgo de intoxicación por una especie invasora: La babosa de mar moteada (Pleurobranchaea maculata) (2016) Rev Coleg Vet Patagónicos, 3, pp. 16-18
  • Bökenhans, V., Fernández Alfaya, J.E., Bigatti, G., Averbuj, A., Diet of the invasive sea slug Pleurobranchaea maculata in Patagonian coastal waters (2019) N Z J Zool, 46, pp. 87-94
  • Bosch, S., Tyberghein, L., Deneudt, K., Hernandez, F., De Clerck, O., In search of relevant predictors for marine species distribution modelling using the MarineSPEED benchmark dataset (2018) Divers Distrib, 24, pp. 144-157
  • Boyce, M.S., Vernier, P.R., Nielsen, S.E., Schmiegelow, F.K.A., Evaluating resource selection functions (2002) Ecol Model, 157, pp. 281-300
  • Broennimann, O., Guisan, A., Predicting current and future biological invasions: Both native and invaded ranges matter (2008) Biol Lett, 4, pp. 585-589
  • Broennimann, O., Treier, U.A., Müller-Schärer, H., Thuiller, W., Peterson, A.T., Guisan, A., Evidence of climatic niche shift during biological invasion (2007) Ecol Lett, 10, pp. 701-709
  • Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Measuring ecological niche overlap from occurrence and spatial environmental data (2012) Glob Ecol Biogeogr, 21, pp. 481-497. , others
  • Broennimann, O., Di Cola, V., Petitpierre, B., Breiner, F., (2018) Ecospat: Spatial Ecology Miscellaneous Methods, , https://cran.r-project.org/web/packages/ecospat/, others Version 3.0
  • Callen, S.T., Miller, A.J., Signatures of niche conservatism and niche shift in the North American kudzu (Pueraria Montana) invasion (2015) Divers Distrib, 21, pp. 853-863
  • Compton, T.J., Rijkenberg, M.J.A., Drent, J., Piersma, T., Thermal tolerance ranges and climate variability: A comparison between bivalves from differing climates (2007) J Exp Mar Biol Ecol, 352, pp. 200-211
  • Compton, T.J., Leathwick, J.R., Inglis, G.J., Thermogeo-graphy predicts the potential global range of the invasive European green crab (Carcinus maenas) (2010) Divers Distrib, 16, pp. 243-255
  • Elith, J., Kearney, M., Phillips, S.J., The art of modelling range-shifting species (2010) Methods Ecol Evol, 1, pp. 330-342
  • Farías, N.E., Obenat, S., Goya, A., Outbreak of a neurotoxic side-gilled sea slug (Pleurobranchaea sp.) in Argentinian coasts (2015) N Z J Zool, 42, pp. 51-56
  • Farías, N.E., Wood, S.A., Obenat, S., Schwindt, E., Genetic barcoding confirms the presence of the neurotoxic sea slug Pleurobranchaea maculata in southwestern Atlantic coast (2016) N Z J Zool, 43, pp. 292-298
  • Ferrer, R.P., Zimmer, R.K., Molecules of keystone significance: Crucial agents in ecology and resource management (2013) BioScience, 63, pp. 428-438
  • Fitzpatrick, M.C., Weltzin, J.F., Sanders, N.J., Dunn, R.R., The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range? (2007) Glob Ecol Biogeogr, 16, pp. 24-33
  • Franklin, J., Moving beyond static species distribution models in support of conservation biogeography (2010) Divers Distrib, 16, pp. 321-330
  • Gallagher, R.V., Beaumont, L.J., Hughes, L., Leishman, M.R., Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia (2010) J Ecol, 98, pp. 790-799
  • Gallien, L., Münkemüller, T., Albert, C.H., Boulangeat, I., Thuiller, W., Predicting potential distributions of invasive species: Where to go from here? (2010) Divers Distrib, 16, pp. 331-342
  • Gibson, G.D., Chia, F.S., Developmental variability in the poecilogonous opisthobranch Haminaea callidegenita: Life-history traits and effects of environmental parameters (1995) Mar Ecol Prog Ser, 121, pp. 139-155
  • Goldsmit, J., Archambault, P., Chust, G., Villarino, E., Projecting present and future habitat suitability of ship-mediated aquatic invasive species in the Canadian Arctic (2018) Biol Invas, 20, pp. 501-517. , others
  • Goslee, S., Urban, D., (2017) Ecodist: Dissimilarity-Based Functions for Ecological Analysis, , https://cran.rproject.org/web/packages/ecodist/, Version 2.0.1
  • Guisan, A., Thuiller, W., Predicting species distribution: Offering more than simple habitat models (2005) Ecol Lett, 8, pp. 993-1009
  • Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Predicting species distributions for conservation decisions (2013) Ecol Lett, 16, pp. 1424-1435. , others
  • Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C.C., Kueffer, C., Unifying niche shift studies: Insights from biological invasions (2014) Trends Ecol Evol, 29, pp. 260-269
  • Hattab, T., Garzón-López, C.X., Ewald, M., Skowronek, S., A unified framework to model the potential and realized distributions of invasive species within the invaded range (2017) Divers Distrib, 23, pp. 806-819. , others
  • Hayes, K.R., Cannon, R., Neil, K., Inglis, G.J., Sensitivity and cost considerations for the detection and eradication of marine pests in ports (2005) Mar Pollut Bull, 50, pp. 823-834
  • Hijmans, R.J., Phillips, S.J., Leathwick, J.R., Elith, J., (2017) Species Distribution Modeling. Package ‘Dismo, , https://cran.r-project.org/web/packages/dismo/index.html, Version 1.1-4
  • Hill, M.P., Gallardo, B., Terblanche, J.S., A global assessment of climatic niche shifts and human influence in insect invasions (2017) Glob Ecol Biogeogr, 26, pp. 679-689
  • Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C., Guisan, A., Evaluating the ability of habitat suitability models to predict species presences (2006) Ecol Model, 199, pp. 142-152
  • Hothorn, T., Bretz, F., Westfall, P., Heiberger, R.M., Schuetzen-meister, A., Scheibe, S., Package ‘multcomp: Simultaneous inference in general parametric models (2017) R-CRAN Proj Version 1.4-8, , https://cran.r-project.org/web/packages/multcomp/index.html
  • Hulme, P.E., Trade, transport and trouble: Managing invasive species pathways in an era of globalization (2009) J Appl Ecol, 46, pp. 10-18
  • Inglis, G.J., Hurren, H., Oldman, J., Haskew, R., Using habitat suitability index and particle dispersion models for early detection of marine invaders (2006) Ecol Appl, 16, pp. 1377-1390
  • Jensen, K.R., Zoogeographic affinities of Hong Kong Opisthobranchia (Mollusca, Gastropoda) (1998) Third International Conference on The Marine Biology of The South China Sea, pp. 43-55. , Morton B ed Hong Kong University Press, Hong Kong
  • Jiménez-Valverde, A., Peterson, A.T., Soberón, J., Overton, J.M., Aragón, P., Lobo, J.M., Use of niche models in invasive species risk assessments (2011) Biol Invas, 13, pp. 2785-2797
  • Jiménez-Valverde, A., Decae, A.E., Arnedo, M.A., Environmental suitability of new reported localities of the funnelweb spider Macrothele calpeiana: An assessment using potential distribution modelling with presence-only techniques (2011) J Biogeogr, 38, pp. 1213-1223
  • Katsanevakis, S., Zenetos, A., Belchior, C., Cardoso, A.C., Invading European seas: Assessing pathways of introduction of marine aliens (2013) Ocean Coast Manag, 76, pp. 64-74
  • Katsanevakis, S., Tempera, F., Teixeira, H., Mapping the impact of alien species on marine ecosystems: The Mediterranean Sea case study (2016) Divers Distrib, 22, pp. 694-707
  • Khor, S., Wood, S.A., Salvitti, L., Taylor, D.I., Adamson, J., McNabb, P.S., Cary, S.C., Investigating diet as the source of tetrodotoxin in Pleurobranchaea maculata (2014) Mar Drugs, 12, pp. 1-16
  • Leidenberger, S., Obst, M., Kulawik, R., Stelzer, K., Heyer, K., Hardisty, A., Bourlat, S.J., Evaluating the potential of ecological niche modelling as a component in marine non-indigenous species risk assessments (2015) Mar Pollut Bull, 97, pp. 470-487
  • Li, Y., Liu, X., Li, X., Petitpierre, B., Guisan, A., Residence time, expansion toward the equator in the invaded range and native range size matter to climatic niche shifts in non-native species (2014) Glob Ecol Biogeogr, 23, pp. 1094-1104
  • Liu, C., White, M., Newell, G., Selecting thresholds for the prediction of species occurrence with presence-only data (2013) J Biogeogr, 40, pp. 778-789
  • Liu, X., Petitpierre, B., Broennimann, O., Li, X., Guisan, A., Li, Y., Realized climatic niches are conserved along maximum temperatures among herpetofaunal invaders (2017) J Biogeogr, 44, pp. 111-121
  • Lobo, J.M., Jiménez-Valverde, A., Real, R., AUC: A misleading measure of the performance of predictive distribution models (2008) Glob Ecol Biogeogr, 17, pp. 145-151
  • Mandle, L., Warren, D.L., Hoffmann, M.H., Peterson, A.T., Schmitt, J., von Wettberg, E.J., Conclusions about niche expansion in introduced Impatiens walleriana populations depend on method of analysis (2010) PLOS ONE, 5
  • Martínez, G., Arim, M., Defeo, O., Distribution of the iso-pod Excirolana braziliensis on sandy beaches of the Atlantic and Pacific Oceans (2017) Mar Ecol Prog Ser, 583, pp. 137-148
  • McNabb, P., Selwood, A.I., Munday, R., Wood, S.A., Detection of tetrodotoxin from the grey side-gilled sea slug - Pleurobranchaea maculata, and associated dog neurotoxicosis on beaches adjacent to the Hauraki Gulf, Auckland, New Zealand (2010) Toxicon, 56, pp. 466-473. , others
  • Ottaway, J.R., Pleurobranchaea novaezelandiae praying on Actinia tenebrosa (1977) N Z J Mar Freshw Res, 11, pp. 125-130
  • Pearson, R.G., Dawson, T.P., Predicting the impacts of climate change on the distribution of species: Are bio-climate envelope models useful? (2003) Glob Ecol Biogeogr, 12, pp. 361-371
  • Pearson, R.G., Raxworthy, C.J., Nakamura, M., Peterson, A.T., Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar (2007) J Biogeogr, 34, pp. 102-117
  • Peterson, A.T., Predicting the geography of species’ invasions via ecological niche modeling (2003) Q Rev Biol, 78, pp. 419-433
  • Peterson, A.T., Ecological niche conservatism: A time-structured review of evidence (2011) J Biogeogr, 38, pp. 817-827
  • Peterson, A.T., Pape, M., Eaton, M., Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent (2007) Ecography, 30, pp. 550-560
  • Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C.C., Guisan, A., Climatic niche shifts are rare among terrestrial plant invaders (2012) Science, 335, pp. 1344-1348
  • Phillips, S.J., Anderson, R.P., Schapire, R.E., Maximum entropy modeling of species geographic distributions (2006) Ecol Model, 190, pp. 231-259
  • Ribas, L.G.S., de Cássia-Silva, C., Petsch, D.K., Silveira, M.J., Lima-Ribeiro, M.S., The potential invasiveness of an aquatic macrophyte reflects founder effects from native niche (2018) Biol Invas, 20, pp. 3347-3355
  • Rodrigues, J.F.M., Coelho, M.T.P., Varela, S., Diniz-Filho, J.A.F., Invasion risk of the pond slider turtle is underestimated when niche expansion occurs (2016) Freshw Biol, 61, pp. 1119-1127
  • Sala, O.E., Chapin, F.S., III, Armesto, J.J., Berlow, E., Global biodiversity scenarios for the year 2100 (2000) Science, 287, pp. 1770-1774. , others
  • Sales, L.P., Ribeiro, B.R., Hayward, M.W., Paglia, A., Passamani, M., Loyola, R., Niche conservatism and the invasive potential of the wild boar (2017) J Anim Ecol, 86, pp. 1214-1223
  • Salvitti, L., Wood, S.A., Taylor, D.I., McNabb, P., Cary, S.C., First identification of tetrodotoxin (TTX) in the flatworm Stylochoplana sp.; a source of TTX for the sea slug Pleurobranchaea maculata (2015) Toxicon, 95, pp. 23-29
  • Salvitti, L.R., Wood, S.A., McNabb, P., Cary, S.C., No evidence for a culturable bacterial tetrodotoxin producer in Pleurobranchaea maculata (Gastropoda: Pleurobranchi-dae) and Stylochoplana sp. (Platyhelminthes: Polycla-dida) (2015) Toxins, 7, pp. 255-273
  • Schoener, T.W., Nonsynchronous spatial overlap of lizards in patchy habitats (1970) Ecology, 51, pp. 408-418
  • Schwindt, E., Bortolus, A., Idaszkin, Y.L., Savoya, V., Méndez, M.M., Salt marsh colonization by a rocky shore invader: Balanus glandula Darwin (1854) spreads along the Patagonian coast (2009) Biol Invas, 11, pp. 1259-1265
  • Smithson, M., Verkuilen, J., A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables (2006) Psychol Methods, 11, pp. 54-71
  • Soberón, J., Nakamura, M., Niches and distributional areas: Concepts, methods, and assumptions (2009) Proc Natl Acad Sci USA, 106, pp. 19644-19650
  • Soberón, J., Peterson, A.T., Interpretation of models of fundamental ecological niches and species’ distributional areas (2005) Biodivers Inform, 2, pp. 1-10
  • Strubbe, D., Broennimann, O., Chiron, F., Matthysen, E., Niche conservatism in non-native birds in Europe: Niche unfilling rather than niche expansion (2013) Glob Ecol Biogeogr, 22, pp. 962-970
  • Verween, A., Vincx, M., Degraer, S., The effect of temperature and salinity on the survival of Mytilopsis leu-cophaeata larvae (Mollusca, Bivalvia): The search for environmental limits (2007) J Exp Mar Biol Ecol, 348, pp. 111-120
  • Vitousek, P.M., D’Antonio, C.M., Loope, L.L., Rejmánek, M., West-brooks, R., Introduced species: A significant component of human-caused global environmental change (1997) N Z J Ecol, 21, pp. 1-16
  • Wang, C.J., Wan, J.Z., Qu, H., Zhang, Z.X., Climatic niche shift of aquatic plant invaders between native and invasive ranges: A test using 10 species across different bio-mes on a global scale (2017) Knowl Manag Aquat Ecosyst, 418, pp. 1-9
  • Warren, D.L., Glor, R.E., Turelli, M., Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution (2008) Evolution, 62, pp. 2868-2883
  • Werschkun, B., Banerji, S., Basurko, O.C., David, M., Emerging risks from ballast water treatment: The run-up to the international ballast water management convention (2014) Chemosphere, 112, pp. 256-266. , others
  • Wiens, J.J., Graham, C.H., Niche conservatism: Integrating evolution, ecology, and conservation biology (2005) Annu Rev Ecol Evol Syst, 36, pp. 519-539
  • Willan, R.C., A review of diets in the Notaspidea (Mollusca: Opisthobranchia) (1984) J Malacol Soc Aust, 6, pp. 125-142
  • Wood, S.A., Casas, M., Taylor, D.I., McNabb, P., Salvitti, L., Ogilvie, S., Cary, S.C., Depuration of tetrodotoxin and changes in bacterial communities in Pleurobranchea [sic] maculata adults and egg masses maintained in captivity (2012) J Chem Ecol, 38, pp. 1342-1350
  • Wood, S.A., Taylor, D.I., McNabb, P.S., Walker, J., Adamson, J., Cary, S.C., Tetrodotoxin concentrations in Pleurobranchaea maculata: Temporal, spatial and individual variability from New Zealand populations (2012) Mar Drugs, 10, pp. 163-176
  • Zacherl, D., Gaines, S.D., Lonhart, S.I., The limits to bio-geographical distributions: Insights from the northward range extension of the marine snail, Kelletia kelletii (Forbes, 1852) (2003) J Biogeogr, 30, pp. 913-924
  • Zeileis, A., Cribari-Neto, F., Gruen, B., Kosmidis, I., Simas, A.B., Rocha, A.V., (2018) R-CRAN Proj Version 3.1-1, , https://cran.r-project.org/web/packages/betareg/index.html, Package ‘betareg

Citas:

---------- APA ----------
Battini, N., Farías, N., Giachetti, C.B., Schwindt, E. & Bortolus, A. (2019) . Staying ahead of invaders: Using species distribution modeling to predict alien species’ potential niche shifts. Marine Ecology Progress Series, 127-140.
http://dx.doi.org/10.3354/meps12878
---------- CHICAGO ----------
Battini, N., Farías, N., Giachetti, C.B., Schwindt, E., Bortolus, A. "Staying ahead of invaders: Using species distribution modeling to predict alien species’ potential niche shifts" . Marine Ecology Progress Series (2019) : 127-140.
http://dx.doi.org/10.3354/meps12878
---------- MLA ----------
Battini, N., Farías, N., Giachetti, C.B., Schwindt, E., Bortolus, A. "Staying ahead of invaders: Using species distribution modeling to predict alien species’ potential niche shifts" . Marine Ecology Progress Series, 2019, pp. 127-140.
http://dx.doi.org/10.3354/meps12878
---------- VANCOUVER ----------
Battini, N., Farías, N., Giachetti, C.B., Schwindt, E., Bortolus, A. Staying ahead of invaders: Using species distribution modeling to predict alien species’ potential niche shifts. Mar. Ecol. Prog. Ser. 2019:127-140.
http://dx.doi.org/10.3354/meps12878