Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The hypothesis of the self-induced collapse of the inflaton wave function was introduced as a candidate for the physical process responsible for the emergence of inhomogeneity and anisotropy at all scales. In particular, we consider different proposal for the precise form of the dynamics of the inflaton wave function: (i) the GRW-type collapse schemes proposals based on spontaneous individual collapses which generate nonvanishing expectation values of various physical quantities taken as ansatz modifications of the standard inflationary scenario; (ii) the proposal based on a Continuous Spontaneous Localization (CSL) type modification of the Schrödinger evolution of the inflaton wave function, based on a natural choice of collapse operator. We perform a systematic analysis within the semi-classical gravity approximation, of the standing of those models considering a full quasi-de Sitter expansion scenario. We note that the predictions for the Cosmic Microwave Background (CMB) temperature and polarization spectrum differ slightly from those of the standard cosmological model. We also analyze these proposals with a Bayesian model comparison using recent CMB and Baryonic Acoustic Oscillations (BAO) data. Our results show a moderate preference of the joint CMB and BAO data for one of the studied collapse schemes model over the ACDM one, while there is no preference when only CMB data are considered. Additionally, analysis using CMB data provide the same Bayesian evidence for both the CSL and Standard Models, i.e. the data have no preference between the simplicity of the LCDM model and the complexity of the collapse scenario. © 2019 World Scientific Publishing Company.

Registro:

Documento: Artículo
Título:Constraining quantum collapse inflationary models with current data: The semiclassical approach
Autor:Piccirilli, M.P.; León, G.; Landau, S.J.; Benetti, M.; Sudarsky, D.
Filiación:Grupo de Astrofísica, Relatividad y Cosmología, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de la Plata, Paseo del Bosque S/N 1900 La Plata, Pcia de Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria - PabI, Buenos Aires, 1428, Argentina
Observatório Nacional, Rua General José Cristino 77, Rio de Janeiro, 20921-400, RJ, Brazil
University of Naples Federico II, Physics Department Ettore Pancini, Monte sant'Angelo Campus, Via Cinthia 21, Naples, I-80126, Italy
Istituto Nazionale di Fisica Nucleare (INFN), Sez. Napoli, Monte sant'Angelo Campus, Via Cinthia 9, Naples, I-80126, Italy
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, México D.F., 04510, Mexico
Palabras clave:Cosmological parameters from CMB; inflation; physics of the early universe
Año:2019
Volumen:28
Número:2
DOI: http://dx.doi.org/10.1142/S021827181950041X
Título revista:International Journal of Modern Physics D
Título revista abreviado:Int. J. Mod. Phys. D
ISSN:02182718
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02182718_v28_n2_p_Piccirilli

Referencias:

  • Starobinsky, A.A., (1980) Phys. Lett. B, 91, p. 99
  • Guth, A.H., (1981) Phys. Rev. D, 23, p. 347
  • Linde, A.D., (1982) Phys. Lett. B, 108, p. 389
  • Albrecht, A., Steinhardt, P.J., (1982) Phys. Rev. Lett., 48, p. 1220
  • Mukhanov, V.F., Chibisov, G.V., (1981) J. Exp. Theor. Phys. Lett., 33, p. 532. , Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549
  • Mukhanov, V.F., Chibisov, G.V., (1982) Sov. Phys. J. Exp. Theor. Phys., 56, p. 258. , Zh. Eksp. Teor. Fiz. 83 (1982) 475
  • Starobinsky, A.A., (1982) Phys. Lett. B, 117, p. 175
  • Guth, A.H., Pi, S.Y., (1982) Phys. Rev. Lett., 49, p. 1110
  • Hawking, S.W., (1982) Phys. Lett. B, 115, p. 295
  • Bardeen, J.M., Steinhardt, P.J., Turner, M.S., (1983) Phys. Rev. D, 28, p. 679
  • Perez, A., Sahlmann, H., Sudarsky, D., (2005) Class. Quantum Grav., 23, p. 2317
  • Sudarsky, D., (2011) Int. J. Mod. Phys. D, 20, p. 509
  • Landau, S., Léon, G., Sudarsky, D., (2013) Phys. Rev. D, 88, p. 023526
  • De Uńanue, A., Sudarsky, D., (2008) Phys. Rev. D, 78, p. 043510
  • Léon, G., Sudarsky, D., (2010) Class. Quantum Grav., 27, p. 225017
  • Diez-Tejedor, A., Sudarsky, D., (2012) J. Cosmol. Astropart. Phys., 7, p. 45
  • Léon, G., De Uńanue, A., Sudarsky, D., (2011) Class. Quantum Grav., 28, p. 155010
  • Landau, S.J., Sćoccola, C.G., Sudarsky, D., (2012) Phys. Rev. D, 85, p. 123001
  • Léon, G., Landau, S.J., Piccirilli, M.P., (2015) Eur. Phys. J. C, 75, p. 393
  • Canate, P., Pearle, P., Sudarsky, D., (2013) Phys. Rev. D, 87, p. 104024
  • Penrose, R., (1996) Gen. Relativ. Gravit., 28, p. 581
  • Diosi, L., (1987) Phys. Lett. A, 120, p. 377
  • Diosi, L., (1989) Phys. Rev. A, 40, p. 1165
  • Ghirardi, G., Rimini, A., Weber, T., (1986) Phys. Rev. D, 34, p. 470
  • Pearle, P.M., (1989) Phys. Rev. A, 39, p. 2277
  • Bassi, A., Ghirardi, G.C., (2003) Phys. Rep., 379, p. 257
  • Bassi, A., Lochan, K., Satin, S., Singh, T.P., Ulbricht, H., (2013) Rev. Mod. Phys., 85, p. 471
  • Grishchuk, L., Sidorov, Y., (1990) Phys. Rev. D, 42, p. 3413
  • Grishchuk, L., Haus, H.A., Bergman, K., (1992) Phys. Rev. D, 46, p. 1440
  • Polarski, D., Starobinsky, A.A., (1996) Class. Quantum Grav., 13, p. 377
  • Lesgourgues, J., Polarski, D., Starobinsky, A.A., (1997) Nucl. Phys. B, 497, p. 479
  • Grishchuk, L.P., Martin, J., (1997) Phys. Rev. D, 56, p. 1924
  • Kiefer, C., Polarski, D., (2009) Adv. Sci. Lett., 2, p. 164
  • Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A., (2007) Class. Quantum Grav., 24, p. 1699
  • Egusquiza, I.L., Feinstein, A., Perez Sebastian, M.A., Valle Basagoiti, M.A., (1998) Class. Quantum Grav., 15, p. 1927
  • Burgess, C.P., Holman, R., Hoover, D., (2008) Phys. Rev. D, 77, p. 063534
  • Albrecht, A., Ferreira, P., Joyce, M., Prokopec, T., (1994) Phys. Rev. D, 50, p. 4807
  • Nomura, Y., (2011) J. High Energy Phys., 11, p. 063
  • Nomura, Y., (2013) Found. Phys., 43, p. 978
  • Mukhanov, V., (2005) Physical Foundations of Cosmology, , Cambridge University Press, New York
  • Valentini, A., ; Pinto-Neto, N., Santos, G., Struyve, W., (2012) Phys. Rev. D, 85, p. 083506
  • Benetti, M., Landau, S.J., Alcaniz, J.S., (2016) J. Cosmol. Astropart. Phys., 1612, p. 035
  • Diez-Tejedor, A., Leon, G., Sudarsky, D., (2012) Gen. Relativ. Gravit., 44, p. 2965
  • Martin, J., Vennin, V., Peter, P., (2012) Phys. Rev. D, 86, p. 103524
  • Das, S., Lochan, K., Sahu, S., Singh, T., (2013) Phys. Rev. D, 88, p. 085020
  • Das, S., Sahu, S., Banerjee, S., Singh, T.P., (2014) Phys. Rev. D, 90, p. 043503
  • Léon, G., Bengochea, G.R., (2016) Eur. Phys. J. C, 76, p. 29
  • Mariani, M., Bengochea, G.R., Léon, G., (2016) Phys. Lett. B, 752, p. 344
  • Banerjee, S., Das, S., Sravan Kumar, K., Singh, T.P., (2017) Phys. Rev. D, 95, p. 103518
  • Alexander, S., Jyoti, D., Magueijo, J., (2016) Phys. Rev. D, 94, p. 043502
  • Léon, G., Kraiselburd, L., Landau, S.J., (2015) Phys. Rev. D, 92, p. 083516
  • Léon, G., Majhi, A., Okon, E., Sudarsky, D., (2017) Phys. Rev. D, 96, p. 101301
  • Léon, G., Majhi, A., Okon, E., Sudarsky, D., (2018) Phys. Rev. D, 98 (2), p. 023512
  • Kuo, C.-I., Ford, L.H., (1993) Phys. Rev. D, 47, p. 4510
  • Brandenberger, R.H., Feldman, H., Mukhanov, V.F., Evolution of the universe and its observational quest (1993) Proc. 37th Yamada Conference, pp. 19-30. , Tokyo, Japan
  • Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H., Theory of cosmological perturbations. Part 1 Classical perturbations. Part 2 Quantum theory of perturbations. Part3 Extensions (1992) Phys. Rept., 215, p. 203
  • Eppley, K., Hannah, E., (1977) Found. Phys., 7, p. 51
  • Mattingly, J., (2006) Phys. Rev. D, 73, p. 064025
  • Huggett, N., Callender, C., (2001) Philos. Sci., 68, p. S382
  • Albers, M., Kiefer, C., Reginatto, M., (2008) Phys. Rev. D, 78, p. 064051
  • Kent, A., (2018) Simple Refutation of the Eppley-Hannah Argument
  • Page, D.N., Geilker, C.D., (1981) Phys. Rev. Lett., 47, p. 979
  • Carlip, S., (2008) Class. Quantum Grav., 25, p. 154010
  • Sudarsky, D., (2014) Fundam. Theor. Phys., 177, p. 349
  • Tilloy, A., Díosi, L., (2016) Phys. Rev. D, 93, p. 024026
  • Léon, G., Bengochea, G.R., Landau, S.J., (2016) Eur. Phys. J. C, 76, p. 407
  • Ade, P.A.R., Planck Collab; Aghanim, N., (2016) Astron. Astrophys., 594, p. A11. , Planck Collaboration
  • Lewis, A., Challinor, A., Lasenby, A., (2000) Astrophys. J., 538, p. 473
  • Lewis, A., Bridle, S., (2002) Phys. Rev. D, 66, p. 103511
  • Feroz, F., Hobson, M.P., Bridges, M., (2009) Mon. Not. R. Astron. Soc., 398, p. 1601
  • Feroz, F., Hobson, M.P., (2008) Mon. Not. R. Astron. Soc., 384, p. 449
  • Feroz, F., Hobson, M.P., Cameron, E., Pettitt, A.N., ; Cameron, E., Pettitt, A., ; Beutler, F., Blake, C., Colless, M., Jones, D.H., Staveley-Smith, L., Campbell, L., Parker, Q., Watson, F., (2011) Mon. Not. R. Astron. Soc., 416, p. 3017
  • Ross, A.J., Samushia, L., Howlett, C., Percival, W.J., Burden, A., Manera, M., (2015) Mon. Not. R. Astron. Soc., 449, p. 835
  • Anderson, L., (2014) Mon. Not. R. Astron. Soc., 441, p. 24. , BOSS Collab
  • Trotta, R., (2007) Mon. Not. R. Astron. Soc., 378, p. 72
  • Benetti, M., Alcaniz, J.S., (2016) Phys. Rev. D, 94, p. 023526
  • Graef, L.L., Benetti, M., Alcaniz, J.S., (2017) J. Cosmol. Astropart. Phys., 1707, p. 013
  • Heavens, A., Fantaye, Y., Sellentin, E., Eggers, H., Hosenie, Z., Kroon, S., Mootoovaloo, A., ; Campista, M., Benetti, M., Alcaniz, J., ; Jeffreys, H., (1998) Theory of Probability, , 3rd edn., Oxford University Press, First Published in the Oxford Classics series
  • Riess, A.G., Macri, L., Casertano, S., Sosey, M., Lampeitl, H., Ferguson, H.C., Filippenko, A.V., Sarkar, D., (2009) Astrophys. J., 699, p. 539
  • Bernal, J.L., Verde, L., Riess, A.G., (2016) J. Cosmol. Astropart. Phys., 1610, p. 019
  • Benetti, M., Graef, L.L., Alcaniz, J.S., (2017) J. Cosmol. Astropart. Phys., 1704, p. 003
  • Zhang, X., (2017) Sci. China Phys. Mech. Astron., 60, p. 060421
  • Addison, G.E., Watts, D.J., Bennett, C.L., Halpern, M., Hinshaw, G., Weiland, J.L., ; Carvalho, G.C., Bernui, A., Benetti, M., Carvalho, J.C., Alcaniz, J.S., (2016) Phys. Rev. D, 93, p. 023530

Citas:

---------- APA ----------
Piccirilli, M.P., León, G., Landau, S.J., Benetti, M. & Sudarsky, D. (2019) . Constraining quantum collapse inflationary models with current data: The semiclassical approach. International Journal of Modern Physics D, 28(2).
http://dx.doi.org/10.1142/S021827181950041X
---------- CHICAGO ----------
Piccirilli, M.P., León, G., Landau, S.J., Benetti, M., Sudarsky, D. "Constraining quantum collapse inflationary models with current data: The semiclassical approach" . International Journal of Modern Physics D 28, no. 2 (2019).
http://dx.doi.org/10.1142/S021827181950041X
---------- MLA ----------
Piccirilli, M.P., León, G., Landau, S.J., Benetti, M., Sudarsky, D. "Constraining quantum collapse inflationary models with current data: The semiclassical approach" . International Journal of Modern Physics D, vol. 28, no. 2, 2019.
http://dx.doi.org/10.1142/S021827181950041X
---------- VANCOUVER ----------
Piccirilli, M.P., León, G., Landau, S.J., Benetti, M., Sudarsky, D. Constraining quantum collapse inflationary models with current data: The semiclassical approach. Int. J. Mod. Phys. D. 2019;28(2).
http://dx.doi.org/10.1142/S021827181950041X