Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, we study the asymptotic behavior of the curves of the Fučík spectrum for weighted second-order linear ordinary differential equations. We prove a Weyl type asymptotic behavior of the hyperbolic type curves in the spectrum in terms of some integrals of the weights. We present an algorithm which computes the intersection of the Fučík spectrum with rays through the origin, and we compare their values with the asymptotic ones. © 2017 World Scientific Publishing Company.

Registro:

Documento: Artículo
Título:Asymptotic behavior of the curves in the Fučík spectrum
Autor:Pinasco, J.P.; Salort, A.M.
Filiación:Departamento de Matemática and IMAS-CONICET, FCEN, University of Buenos Aires Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
Palabras clave:eigenvalue bounds; Fučík spectrum; Weyl's type estimates
Año:2017
Volumen:19
Número:4
DOI: http://dx.doi.org/10.1142/S0219199716500395
Título revista:Communications in Contemporary Mathematics
Título revista abreviado:Commun. Contemp. Math.
ISSN:02191997
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_02191997_v19_n4_p_Pinasco

Referencias:

  • Alif, M., Sur le spectre de Fucik du p-Laplacien avec des Poids indefinis (2002) C. R. Math. Acad. Sci. Paris, 334, pp. 1061-1066
  • Alif, M., Gossez, J.-P., On the Fučik spectrum with indefinite weights (2001) Differential Integral Equations, 14, pp. 1511-1530
  • Brown, B.M., Reichel, W., Computing eigenvalues and Fučik spectrum of the radially symmetric p-Laplacian (2002) J. Comput. Appl. Math, 148, pp. 183-211
  • Chen, W., Chu, J., Yan, P., Zhang, M., On the Fučik spectrum of the scalar p-Laplacian with indefinite integrable weights (2014) Bound. Value Prob 2014, 10, p. 34
  • Courant, R., Hilbert, D., (1953) Methods of Mathematical Physics, 1. , Interscience Publishers, Inc
  • Cuesta, M., De Figueiredo, D., Gossez, J.-P., The beginning of the Fučik spectrum for the p-Laplacian (1999) J. Differential Equations, 159, pp. 212-238
  • Dancer, E.N., On the Dirichlet problem for weakly non-linear elliptic partial differential equations (1976) Proc. Roy. Soc. Edinburgh Sect. A 1976, (77), pp. 283-300
  • Dosly, O., Rehak, P., (2005) Half-Linear Differential Equations North-Holland Mathematics Studies, 202. , Elsevier
  • Fleckinger, J., Lapidus, M., Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights (1987) Arch. Ration. Mech. Anal, 98, pp. 329-356
  • Fučik, S., Boundary value problems with jumping nonlinearities (1976) Casopis Pěst. Mat, 101, pp. 69-87
  • Genoud, F., Rynne, P., Half eigenvalues and the Fučik spectrum of multi-point, boundary value problems (2012) J. Differential Equations, 252, pp. 5076-5095
  • Pinasco, J.P., Lower bounds of Fučik eigenvalues of the weighted one-dimensional p-Laplacian (2004) Rend. Istit. Mat. Univ. Trieste, 36, pp. 49-64
  • Pinasco, J.P., (2013) Lyapunov-Type Inequalities with Applications to Eigenvalue Problems, , Springer
  • Rynne, B.P., The Fučik spectrum of general Sturm-Liouville problems (2000) J. Differential Equations, 161, pp. 87-109

Citas:

---------- APA ----------
Pinasco, J.P. & Salort, A.M. (2017) . Asymptotic behavior of the curves in the Fučík spectrum. Communications in Contemporary Mathematics, 19(4).
http://dx.doi.org/10.1142/S0219199716500395
---------- CHICAGO ----------
Pinasco, J.P., Salort, A.M. "Asymptotic behavior of the curves in the Fučík spectrum" . Communications in Contemporary Mathematics 19, no. 4 (2017).
http://dx.doi.org/10.1142/S0219199716500395
---------- MLA ----------
Pinasco, J.P., Salort, A.M. "Asymptotic behavior of the curves in the Fučík spectrum" . Communications in Contemporary Mathematics, vol. 19, no. 4, 2017.
http://dx.doi.org/10.1142/S0219199716500395
---------- VANCOUVER ----------
Pinasco, J.P., Salort, A.M. Asymptotic behavior of the curves in the Fučík spectrum. Commun. Contemp. Math. 2017;19(4).
http://dx.doi.org/10.1142/S0219199716500395