Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Caseinglycomacropeptide (CMP) is a valuable peptide for its bioactive as well as for its technological properties. One of the more relevant properties of this peptide is its ability to self-assemble in solution by decreasing the pH below 4.5, leading to gel formation. The objective of present work was to characterize CMP and CMP/Co-emulsifiers based oil/water emulsions and to evaluate if these emulsions may undergo a pH-dependent gelation. In addition, the stability of the gelled CMP emulsion to pH changes was evaluated. The droplet size of the emulsions was determined before and after the reversal of gelation, to evaluate the degree of destabilization. Additionally, interfacial studies of CMP and CMP/co-emulsifier (lecithin (LEC), arabic gum (AG), gelatin (GEL) and sodium caseinate (NaCas)) were performed in a drop tensiometer to understand the emulsions behavior. It was not possible to form a stable CMP emulsion over time at pH 6.5. By lowering the pH, the gelation of CMP emulsion was achieved; however, during the acidification necessary to promote gelation, the emulsion partially coalesced. In the competitive adsorption between CMP and the co-emulsifiers, the interfacial pressure was controlled by the component that exhibits higher interfacial activity. CMP dominated the interfacial pressure in mixtures with GEL, LEC and AG, while in CMP/NaCas mixture it was controlled by NaCas. Among the co-emulsifiers studied, NaCas and LEC improved the stability of CMP emulsion over time; however, none of the co-emulsifiers studied in the present work could improve the stability of CMP emulsions against pH changes. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:pH-induced cold gelation of caseinglycomacropeptide emulsions
Autor:Morales, R.; Martinez, M.J.; Pilosof, A.M.R.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina
CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
Palabras clave:Caseinglycomacropeptide; Droplet size; Gelled emulsions; Interfacial properties
Año:2019
Volumen:87
Página de inicio:805
Página de fin:813
DOI: http://dx.doi.org/10.1016/j.foodhyd.2018.09.019
Título revista:Food Hydrocolloids
Título revista abreviado:Food Hydrocolloids
ISSN:0268005X
CODEN:FOHYE
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_0268005X_v87_n_p805_Morales

Referencias:

  • Aimutis, W.R., Anderson, G.H., Moore, S.E., The emerging role of dairy proteins and bioactive peptides in nutrition and health dietary proteins in the regulation of food intake and body weight in humans (2004) Journal of Nutrition, 134 (4), pp. 974-979. , http://doi.org/10.1128/JB.188.5.1691
  • Allen, K.E., Dickinson, E., Murray, B., (2006) Acidified sodium caseinate emulsion foams containing liquid fat : A comparison with whipped cream, 39, pp. 225-234. , http://doi.org/10.1016/j.lwt.2005.02.004
  • Bos, M.A., Van Vliet, T., Interfacial rheological properties of adsorbed protein layers and surfactants: A review (2001) Advances in Colloid and Interface Science, 91 (3), pp. 437-471. , http://doi.org/10.1016/S0001-8686(00)00077-4
  • Boutin, C., Giroux, H.J., Paquin, P., Britten, M., Characterization and acid-induced gelation of butter oil emulsions produced from heated whey protein dispersions (2007) International Dairy Journal, 17 (6), pp. 696-703. , http://doi.org/10.1016/j.idairyj.2006.08.009
  • Brody, E.P., Biological activities of bovine glycomacropeptide (2000) British Journal of Nutrition, 84 (1), pp. S39-S46
  • Camino, N.A., Sanchez, C.C., Rodríguez Patino, J.M., Pilosof, A.M.R., Hydroxypropylmethylcellulose-β-lactoglobulin mixtures at the oil-water interface. Bulk, interfacial and emulsification behavior as affected by pH (2012) Food Hydrocolloids, 27 (2), pp. 464-474. , http://doi.org/10.1016/j.foodhyd.2011.09.006
  • Chanamai, R., McClements, D.J., Comparison of gum Arabic, modified starch, and whey protein isolate as emulsifiers: Influence of pH, CaCl2 and temperature (2002) Journal of Food Science, 67 (1), pp. 120-125. , http://doi.org/10.1111/j.1365-2621.2002.tb11370.x
  • Chen, J., Dickinson, E., Viscoelastic properties of heat-set whey protein emulsion gels (1998) Journal of Texture Studies, 29 (3), pp. 285-304. , http://doi.org/10.1111/j.1745-4603.1998.tb00171.x
  • Chobert, J.M., Touati, A., Bertrandharb, C., Dalgalorrondo, M., Nicolas, M.G., Solubility and emulsifying properties of κ-casein and its caseinomacropeptide (1989) Journal of Food Biochemistry, 13, pp. 457-473
  • Comas, D.I., Wagner, J.R., Tomás, M.C., Creaming stability of oil in water (O/W) emulsions: Influence of pH on soybean protein-lecithin interaction (2006) Food Hydrocolloids, 20 (7), pp. 990-996. , http://doi.org/10.1016/j.foodhyd.2005.11.006
  • Daliri, E., Oh, D., Lee, B., Bioactive peptides (2017) Foods, 6 (5), p. 32. , http://doi.org/10.3390/foods6050032
  • Dickinson, E., An introduction to food colloids (1992), Oxford University Press Oxford; Dickinson, E., Milk protein interfacial layers and the relationship to emulsion stability and rheology (2001) Colloids and Surfaces B: Biointerfaces, 20 (3), pp. 197-210. , http://doi.org/10.1016/S0927-7765(00)00204-6
  • Dickinson, E., Hydrocolloids at interfaces and the influence on the properties of dispersed systems (2003) Food Hydrocolloids, 17 (1), pp. 25-39. , http://doi.org/10.1016/S0268-005X(01)00120-5
  • Dickinson, E., Hydrocolloids as emulsifiers and emulsion stabilizers (2009) Food Hydrocolloids, 23 (6), pp. 1473-1482. , http://doi.org/10.1016/j.foodhyd.2008.08.005
  • Dickinson, E., Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets (2012) Food Hydrocolloids, 28 (1), pp. 224-241. , http://doi.org/10.1016/j.foodhyd.2011.12.017
  • Dickinson, E., Stabilising emulsion-based colloidal structures with mixed food ingredients (2013) Journal of the Science of Food and Agriculture, 93 (4), pp. 710-721. , http://doi.org/10.1002/jsfa.6013
  • Dickinson, E., Biopolymer-based particles as stabilizing agents for emulsions and foams (2017) Food Hydrocolloids, 68, pp. 219-231. , http://doi.org/10.1016/j.foodhyd.2016.06.024
  • Dickinson, E., Chen, J., Heat-set whey protein emulsion gels: Role of active and inactive filler particles (1999) Journal of Dispersion Science and Technology, 20 (1-2), pp. 197-213. , http://doi.org/10.1080/01932699908943787
  • Dziuba, J., Minkiewicz, P., Influence of glycosylation on micelle-stabilizing ability and biological properties of C-terminal fragments of cow's κ-casein (1996) International Dairy Journal, 6 (11-12), pp. 1017-1044
  • El-Salam, M.H.A., El-Shibiny, S., Buchheim, W., Characteristics and potential uses of the casein macropeptide (1996) International Dairy Journal, 6 (4), pp. 327-341
  • Farías, M.E., Martinez, M.J., Pilosof, A.M.R., Casein glycomacropeptide pH-dependent self-assembly and cold gelation (2010) International Dairy Journal, 20, pp. 79-88
  • Galazka, V.B., Dickinson, E., Ledward, D.A., Effect of high pressure on the emulsifying behaviour of β-lactoglobulin (1996) Food Hydrocolloids, 10 (2), pp. 213-219. , http://doi.org/10.1016/S0268-005X(96)80037-3
  • Graham, D.E., Phillips, M.C., Proteins at liquid interfaces: II adsorption isotherms (1979) Journal of Colloid and Interface Science, 70 (3), pp. 415-426. , http://doi.org/https://doi.org/10.1016/0021-9797(79)90049-3
  • Gülseren, I., Güzey, D., Bruce, B.D., Weiss, J., Structural and functional changes in ultrasonicated bovine serum albumin solutions (2007) Ultrasonics Sonochemistry, 14 (2), pp. 173-183. , http://doi.org/10.1016/j.ultsonch.2005.07.006
  • Jayme, M., Dunstan, D., Gee, M., Zeta potentials of gum Arabic stabilised oil in water emulsions (1999) Food Hydrocolloids, 13 (6), pp. 459-465. , http://doi.org/10.1016/S0268-005X(99)00029-6
  • Karlberg, M., Thuresson, K., Lindman, B., Hydrophobically modified ethyl(hydroxyethyl)cellulose as stabilizer and emulsifying agent in macroemulsions (2005) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 262 (1-3), pp. 158-167. , http://doi.org/10.1016/j.colsurfa.2005.04.026
  • Klein, M., Aserin, A., Svitov, I., Garti, N., Enhanced stabilization of cloudy emulsions with gum Arabic and whey protein isolate (2010) Colloids and Surfaces B: Biointerfaces, 77 (1), pp. 75-81. , http://doi.org/10.1016/j.colsurfb.2010.01.008
  • Kreuß, M., Strixner, T., Kulozik, U., Kreuβ, M., Strixner, T., Kulozik, U., The effect of glycosylation on the interfacial properties of bovine caseinomacropeptide (2009) Food Hydrocolloids, 23 (7), pp. 1818-1826. , http://doi.org/10.1016/j.foodhyd.2009.01.011
  • Leroux, J., Langendorff, V., Schick Vaishnav, V.G., Mazoyer, J., Emulsion stabilizing properties of pectin (2003) Food Hydrocolloids, 17, pp. 455-462
  • Lin, X., Wang, Q., Li, W., Wright, A., Emulsification of algal oil with soy lecithin improved DHA bioaccessibility but did not change overall in vitro digestibility (2014) Food & Function, 5 (11), pp. 2913-2921. , http://doi.org/10.1039/c4fo00577e
  • Liu, H., Wang, C., Zou, S., Wei, Z., Tong, Z., Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification (2012) Langmuir, 28 (30), pp. 11017-11024. , http://doi.org/10.1021/la3021113
  • Livney, Y.D., Milk proteins as vehicles for bioactives (2010) Current Opinion in Colloid & Interface Science, 15 (1-2), pp. 73-83. , http://doi.org/10.1016/j.cocis.2009.11.002
  • Manso, M.A., López Fandiño, R., κ-casein macropeptides from cheese whey: Physicochemical, biological, nutritional, and technological features for possible uses (2004) Food Reviews International, 20, pp. 329-355
  • Mantovani, R.A., Cavallieri, Â.L.F., Cunha, R.L., Gelation of oil-in-water emulsions stabilized by whey protein (2016) Journal of Food Engineering, 175, pp. 108-116. , http://doi.org/10.1016/j.jfoodeng.2015.12.011
  • Mantovani, R.A., Cavallieri, Â.L.F., Netto, F.M., Cunha, R.L., Stability and in vitro digestibility of emulsions containing lecithin and whey proteins (2013) Food & function, 4 (9), pp. 1322-1331. , http://doi.org/10.1039/c3fo60156k
  • Martin-Diana, A.B., Frias, J., Fontecha, J., Emulsifying properties of whey protein concentrate and caseinomacropeptide of cow, Ewe and goat (2005) Milchwissenschaft, 60, pp. 363-366
  • Martinez, M.J., Carrera Sánchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Bulk and interfacial behaviour of caseinoglycomacropeptide (GMP) (2009) Colloids and Surfaces B: Biointerfaces, 71, pp. 230-237
  • Martinez, M.J., Farías, M.E., Pilosof, A.M.R., Casein glycomacropeptide pH-driven self-assembly and gelation upon heating (2011) Food Hydrocolloids, 25 (5), pp. 860-867. , http://doi.org/10.1016/j.foodhyd.2010.08.005
  • Martinez, M.J., Pizones Ruiz-Henestrosa, V.M., Carrera Sánchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Foaming and surface properties of casein glycomacropeptide - gelatin mixtures as affected by their interactions in the aqueous phase (2013) Food Hydrocolloids, 33 (1), pp. 48-57
  • Martin, A.H., Grolle, K., Bos, M.A., Cohen Stuart, M.A., Van Vliet, T., Network forming properties of various proteins adsorbed at the air/water interface in relation to foam stability (2002) Journal of Colloid and Interface Science, 254 (1), pp. 175-183. , http://doi.org/10.1006/jcis.2002.8592
  • McClements, D.J., Food emulsions: Principles, practices, and techniques (2015), CRC Press (3.a ed.); Morales, R., Martinez, M.J., Pilosof, A.M.R., Dynamics of gelation, textural and microstructural properties of gelatin gels in the presence of casein glycomacropeptide (2016) Food Research International, 84, pp. 102-107. , http://doi.org/10.1016/j.foodres.2016.03.024
  • Moreno, F.J., López-Fandiño, R., Olano, A., Characterization and functional properties of lactosyl caseinomacropeptide conjugates (2002) Journal of Agricultural and Food Chemistry, 50 (18), pp. 5179-5184. , http://doi.org/10.1021/jf020118u
  • Palazolo, G.G., Sorgentini, D.A., Wagner, J.R., Coalescence and flocculation in o/w emulsions of native and denatured whey soy proteins in comparison with soy protein isolates (2005) Food Hydrocolloids, 19, pp. 595-604
  • Park, Y.W., Nam, M.S., Bioactive peptides in milk and dairy products: A review (2015) Korean Journal for Food Science of Animal Resources, 35 (6), pp. 831-840. , http://doi.org/10.5851/kosfa.2015.35.6.831
  • Relkin, P., Sourdet, S., Factors affecting fat droplet aggregation in whipped frozen protein-stabilized emulsions (2005) Food Hydrocolloids, 19 (3), pp. 503-511. , http://doi.org/10.1016/j.foodhyd.2004.10.015
  • Remondetto, G.E., Beyssac, E., Subirade, M., Iron availability from whey protein hydrogels: An in vitro study (2004) Journal of Agricultural and Food Chemistry, 52 (26), pp. 8137-8143. , http://doi.org/10.1021/jf040286h
  • Robitaille, G., Lapointe, C., Leclerc, D., Britten, M., Effect of pepsin-treated bovine and goat caseinomacropeptide on Escherichia coli and Lactobacillus rhamnosus in acidic conditions (2012) Journal of Dairy Science, 95 (1), pp. 1-8. , http://doi.org/10.3168/jds.2010-4142
  • Rodríguez Patino, J.M., Molina Ortiz, S.E., Carrera Sánchez, C., Rodríguez Niño, M.R., Añón, M.C., Dynamic properties of soy globulin adsorbed films at the air-water interface (2003) Journal of Colloid and Interface Science, 268 (1), pp. 50-57. , http://doi.org/10.1016/S0021-9797(03)00642-8
  • Rodríguez Patino, J.M., Pilosof, A.M.R., Protein-polysaccharide interactions at fluid interfaces (2011) Food Hydrocolloids, 25 (8), pp. 1925-1937
  • Rosa, P., Sala, G., Van Vliet, T., Van De Velde, F., Cold gelation of whey protein emulsions (2006) Journal of Texture Studies, 37 (5), pp. 516-537. , http://doi.org/10.1111/j.1745-4603.2006.00066.x
  • Ruffin, E., Schmit, T., Lafitte, G., Dollat, J.M., Chambin, O., The impact of whey protein preheating on the properties of emulsion gel bead (2014) Food Chemistry, 151, pp. 324-332. , http://doi.org/10.1016/j.foodchem.2013.11.071
  • Sánchez, C.C., Patino, J.M.R., Interfacial, foaming and emulsifying characteristics of sodium caseinate as influenced by protein concentration in solution (2005) Food Hydrocolloids, 19 (3), pp. 407-416. , http://doi.org/10.1016/j.foodhyd.2004.10.007
  • Sharma, R., Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk : A review (2013), http://doi.org/10.1007/s13594-012-0095-0, 21-43; Sok Line, V.L., Remondetto, G.E., Subirade, M., Cold gelation of β-lactoglobulin oil-in-water emulsions (2005) Food Hydrocolloids, 19 (2), pp. 269-278. , http://doi.org/10.1016/j.foodhyd.2004.06.004
  • Tavares, G.M., Croguennec, T., Carvalho, A.F., Bouhallab, S., Milk proteins as encapsulation devices and delivery vehicles: Applications and trends (2014) Trends in Food Science & Technology, 37 (1), pp. 5-20. , http://doi.org/10.1016/j.tifs.2014.02.008
  • Thomä Worringer, C., Siegert, N., Kulozik, U., Foaming properties of caseinomacropeptide - 1. Impact of concentration and interactions with whey proteins (2007) Milchwissenschaft, 62, pp. 249-252
  • Thoma-Worringer, C., Sörensen, J., López-Fandiño, R., Health effects and technological features of caseinomacropeptide (2006) International Dairy Journal, 16 (11), pp. 1324-1333. , http://doi.org/10.1016/j.idairyj.2006.06.012
  • Wong, P.Y.Y., Nakamura, S., Kitts, D.D., Functional and biological activities of casein glycomacropeptide as influenced by lipophilization with medium and long chain fatty acid (2006) Food Chemistry, 97 (2), pp. 310-317. , http://doi.org/https://doi.org/10.1016/j.foodchem.2005.04.019
  • Ye, A., Singh, H., Interfacial composition and stability of sodium caseinate emulsions as influenced by calcium ions (2001) Food Hydrocolloids, 15 (2), pp. 195-207. , http://doi.org/10.1016/S0268-005X(00)00065-5
  • Ye, A., Taylor, S., Characterization of cold-set gels produced from heated emulsions stabilized by whey protein (2009) International Dairy Journal, 19 (12), pp. 721-727. , http://doi.org/10.1016/j.idairyj.2009.06.003
  • Ye, A., Zhu, X., Singh, H., Oil-in-water emulsion system stabilized by protein-coated nanoemulsion droplets (2013) Langmuir, 29 (47), pp. 14403-14410. , http://doi.org/10.1021/la403493y

Citas:

---------- APA ----------
Morales, R., Martinez, M.J. & Pilosof, A.M.R. (2019) . pH-induced cold gelation of caseinglycomacropeptide emulsions. Food Hydrocolloids, 87, 805-813.
http://dx.doi.org/10.1016/j.foodhyd.2018.09.019
---------- CHICAGO ----------
Morales, R., Martinez, M.J., Pilosof, A.M.R. "pH-induced cold gelation of caseinglycomacropeptide emulsions" . Food Hydrocolloids 87 (2019) : 805-813.
http://dx.doi.org/10.1016/j.foodhyd.2018.09.019
---------- MLA ----------
Morales, R., Martinez, M.J., Pilosof, A.M.R. "pH-induced cold gelation of caseinglycomacropeptide emulsions" . Food Hydrocolloids, vol. 87, 2019, pp. 805-813.
http://dx.doi.org/10.1016/j.foodhyd.2018.09.019
---------- VANCOUVER ----------
Morales, R., Martinez, M.J., Pilosof, A.M.R. pH-induced cold gelation of caseinglycomacropeptide emulsions. Food Hydrocolloids. 2019;87:805-813.
http://dx.doi.org/10.1016/j.foodhyd.2018.09.019