Artículo

Martínez, J.H.; Velázquez, F.; Burrieza, H.P.; Martínez, K.D.; Paula Domínguez Rubio, A.; dos Santos Ferreira, C.; del Pilar Buera, M.; Pérez, O.E. "Betanin loaded nanocarriers based on quinoa seed 11S globulin. Impact on the protein structure and antioxidant activity" (2019) Food Hydrocolloids. 87:880-890
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The objective of the present contribution was to design and characterize betanin (Bt) loaded 11S quinoa seed protein nanovehicles. 11S was isolated from quinoa seed floor. Protein purification was performed by Size-Exclusion Chromatography. MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization-Time-Of- Flight) analysis confirmed the identity of 11S. Nanocarriers (11S-Bt) were generated at pH 8 at different ionic strength. Globulin intrinsic fluorescence spectra showed a quenching effect exerted by Bt, demonstrating in turn protein-bioactive interaction. Stern-Volmer and Scatchard models application confirmed static quenching and allowed to obtain parameters that described 11S and betanin complexation process. Bt-11S globulin interactions seem to be more probably of physical type. Protein solubility was increased after complexation with Bt. 11S betanin-loaded nanocarrier showed additive effect in terms of both, antiradical or reducing power capacity in comparison to Bt as evaluated by two methods, 2,2 -azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS), and by ferric reducing antioxidant power (FRAP). Interestingly 11S globulin quaternary structure was modified by the bioactive, experimenting hexamer dissociation. This nanocarrier could have the potentiality to exert the Bt controlled delivery for pharmaceutical and nutraceutical products. Bt could also be protected from light and oxygen in such systems. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Betanin loaded nanocarriers based on quinoa seed 11S globulin. Impact on the protein structure and antioxidant activity
Autor:Martínez, J.H.; Velázquez, F.; Burrieza, H.P.; Martínez, K.D.; Paula Domínguez Rubio, A.; dos Santos Ferreira, C.; del Pilar Buera, M.; Pérez, O.E.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
Departamento de Desarrollo Productivo y Tecnológico, Universidad Nacional de Lanús, Provincia de Buenos Aires, Argentina
Palabras clave:11S quinoa globulin; Antioxidant activity; Betanin; Nanocarrier
Año:2019
Volumen:87
Página de inicio:880
Página de fin:890
DOI: http://dx.doi.org/10.1016/j.foodhyd.2018.09.016
Título revista:Food Hydrocolloids
Título revista abreviado:Food Hydrocolloids
ISSN:0268005X
CODEN:FOHYE
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_0268005X_v87_n_p880_Martinez

Referencias:

  • Abaee, A., Mohammadian, M., Jafari, S.M., Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems (2017) Trends in Food Science & Technology, 70, pp. 69-81. , http://doi.org/10.1016/j.tifs.2017.10.011
  • Abugoch, L., Castro, E., Tapia, C., Añón, M.C., Gajardo, P., Villarroel, A., Stability of quinoa flour proteins (Chenopodium quinoa Willd.) during storage (2009) International Journal of Food Science and Technology, 44 (10), pp. 2013-2020. , http://doi.org/10.1111/j.1365-2621.2009.02023.x
  • Adachi, M., Kanamori, J., Masuda, T., Yagasaki, K., Kitamura, K., Mikami, B., Crystal structure of soybean 11S globulin: Glycinin A3B4 homohexamer (2003) Proceedings of the National Academy of Sciences, 100 (12), pp. 7395-7400. , http://doi.org/10.1073/pnas.0832158100
  • Andreeva, Y.I., Drozdov, A.S., Fakhardo, A.F., Cheplagin, N.A., Shtil, A.A., Vinogradov, V.V., The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response (2017) Scientific Reports, 7 (1), p. 11343. , http://doi.org/10.1038/s41598-017-11673-4
  • Benzie, I., Strain, J., The ferric reducing ability of plasma as a measure of antioxidant (2000) Analytical Biochemistry, 239 (1), pp. 70-76
  • Bian, Q., Liu, J., Tian, J., Hu, Z., Binding of genistein to human serum albumin demonstrated using tryptophan fluorescence quenching (2004) International Journal of Biological Macromolecules, 34 (5), pp. 275-279. , http://doi.org/10.1016/j.ijbiomac.2004.09.005
  • Bois, J.F., Winkel, T., Lhomme, J.P., Raffaillac, J.P., Rocheteau, A., Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: Effects on germination, phenology, growth and freezing (2006) European Journal of Agronomy, 25 (4), pp. 299-308. , http://doi.org/10.1016/j.eja.2006.06.007
  • Bojórquez-Velázquez, E., Lino-López, G.J., Huerta-Ocampo, J.A., Barrera-Pacheco, A., Barba de la Rosa, A.P., Moreno, A., Osuna-Castro, J.A., Purification and biochemical characterization of 11S globulin from chan (Hyptis suaveolens L. Poit) seeds (2016) Food Chemistry, 192, pp. 203-211. , http://doi.org/10.1016/j.foodchem.2015.06.099
  • Bojórquez-Velázquez, E., Lino-López, G.J., Huerta-Ocampo, J.A., Barrera-Pacheco, A., Barba de la Rosa, A.P., Moreno, A., Osuna-Castro, J.A., Purification and biochemical characterization of 11S globulin from chan (Hyptis suaveolens L. Poit) seeds (2016) Food Chemistry, 192, pp. 203-211. , http://doi.org/10.1016/j.foodchem.2015.06.099
  • Brinegar, C., Goundan, S., Isolation and characterization of chenopodin, the 11S seed storage protein of quinoa (Chenopodium quinoa) (1993) Journal of Agricultural and Food Chemistry, 41 (2), pp. 182-185. , http://doi.org/10.1021/jf00026a006
  • Burrieza, H.P., Koyro, H.-W., Tosar, L.M., Kobayashi, K., Maldonado, S., High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos (2012) Plant and Soil, 354 (1-2), pp. 69-79. , http://doi.org/10.1007/s11104-011-1045-y
  • Burrieza, H.P., López-Fernández, M.P., Maldonado, S., Analogous reserve distribution and tissue characteristics in quinoa and grass seeds suggest convergent evolution (2014) Frontiers of Plant Science, 5. , http://doi.org/10.3389/fpls.2014.00546
  • Esatbeyoglu, T., Wagner, A.E., Schini-Kerth, V.B., Rimbach, G., Betanin—a food colorant with biological activity (2015) Molecular Nutrition & Food Research, 59 (1), pp. 36-47. , http://doi.org/10.1002/mnfr.201400484
  • Esatbeyoglu, T., Wagner, A.E., Schini-Kerth, V.B., Rimbach, G., Betanin—a food colorant with biological activity (2015) Molecular Nutrition & Food Research, 59 (1), pp. 36-47. , http://doi.org/10.1002/mnfr.201400484
  • Escribano, J., Characterization of the antiradical activity of betalains from Beta vulgaris L. roots (1998) Phytochemical Analysis, 9 (3), pp. 124-127
  • Escribano, J., Cabanes, J., Jiménez-Atiénzar, M., Ibañez-Tremolada, M., Gómez-Pando, L.R., García-Carmona, F., Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties (2017) Food Chemistry, 234, pp. 285-294. , http://doi.org/10.1016/j.foodchem.2017.04.187
  • Faridi Esfanjani, A., Jafari, S.M., Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds (2016) Colloids and Surfaces B: Biointerfaces, 146, pp. 532-543. , http://doi.org/10.1016/j.colsurfb.2016.06.053
  • Fröhlich, E., The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles (2012) International Journal of Nanomedicine, 5577. , http://doi.org/10.2147/IJN.S36111
  • Gandía-Herrero, F., Escribano, J., García-Carmona, F., Structural implications on color, fluorescence, and antiradical activity in betalains (2010) Planta, 232 (2), pp. 449-460. , http://doi.org/10.1007/s00425-010-1191-0
  • Gandía-Herrero, F., Escribano, J., García-Carmona, F., Structural implications on color, fluorescence, and antiradical activity in betalains (2010) Planta, 232 (2), pp. 449-460. , http://doi.org/10.1007/s00425-010-1191-0
  • Gan, Q., Wang, T., Chitosan nanoparticle as protein delivery Carrier—systematic examination of fabrication conditions for efficient loading and release (2007) Colloids and Surfaces B: Biointerfaces, 59 (1), pp. 24-34. , http://doi.org/10.1016/j.colsurfb.2007.04.009
  • Gerzhova, A., Mondor, M., Benali, M., Aider, M., Study of total dry matter and protein extraction from canola meal as affected by the pH, salt addition and use of zeta-potential/turbidimetry analysis to optimize the extraction conditions (2016) Food Chemistry, 201, pp. 243-252. , http://doi.org/10.1016/j.foodchem.2016.01.074
  • Gonçalves, L.C.P., Trassi, M.A.D.S., Lopes, N.B., Dörr, F.A., Santos, M.T.D., Baader, W.J., Bastos, E.L., A comparative study of the purification of betanin (2012) Food Chemistry, 131 (1), pp. 231-238. , http://doi.org/10.1016/j.foodchem.2011.08.067
  • Hartmann, R., Meisel, H., Food-derived peptides with biological activity: From research to food applications (2007) Current Opinion in Biotechnology, 18 (2), pp. 163-169. , http://doi.org/10.1016/j.copbio.2007.01.013
  • Huang, Q., Yu, H., Ru, Q., Bioavailability and delivery of nutraceuticals using nanotechnology (2010) Journal of Food Science, 75 (1), pp. R50-R57. , http://doi.org/10.1111/j.1750-3841.2009.01457.x
  • Ichikawa, S., Iwamoto, S., Watanabe, J., Formation of biocompatible nanoparticles by self-assembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose (2005) Bioscience Biotechnology & Biochemistry, 69 (9), pp. 1637-1642. , http://doi.org/10.1271/bbb.69.1637
  • Iswaran, V., Marwah, T.S., A modified rapid Kjeldahl method for determination of total nitrogen in agricultural and biological materials (1980) Geobios, 7 (6), pp. 281-282
  • Jacobsen, S.-E., Mujica, A., Jensen, C.R., The resistance of quinoa ( Chenopodium quinoa Willd.) to adverse abiotic factors (2003) Food Reviews International, 19 (1-2), pp. 99-109. , http://doi.org/10.1081/FRI-120018872
  • Jafari, S.M., McClements, D.J., Nanotechnology approaches for increasing nutrient bioavailability (2017) Advances in food and nutrition research, 81. , http://doi.org/10.1016/bs.afnr.2016.12.008, (1st ed.). Elsevier Inc
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227 (5259), pp. 680-685. , http://doi.org/10.1038/227680a0
  • Lakowicz, J.R., Weber, G., Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules (1973) Biochemistry, 12 (21), pp. 4161-4170. , http://www.ncbi.nlm.nih.gov/pubmed/4795686, Retrieved from:
  • Liang, L., Subirade, M., β-Lactoglobulin/Folic acid complexes: Formation, characterization, and biological implication (2010) The Journal of Physical Chemistry B, 114 (19), pp. 6707-6712. , http://doi.org/10.1021/jp101096r
  • Li, Y., Polozova, A., Gruia, F., Feng, J., Characterization of the degradation products of a color-changed monoclonal antibody: Tryptophan-derived chromophores (2014) Analytical Chemistry, 86 (14), pp. 6850-6857. , http://doi.org/10.1021/ac404218t
  • Mäkinen, O.E., Zannini, E., Koehler, P., Arendt, E.K., Heat-denaturation and aggregation of quinoa ( Chenopodium quinoa) globulins as affected by the pH value (2016) Food Chemistry, 196, pp. 17-24. , http://doi.org/10.1016/j.foodchem.2015.08.069
  • Malvern, I., Inform white paper dynamic light scattering (2011) Malvern Guides, 1-6
  • Nasti, A., Zaki, N.M., de Leonardis, P., Ungphaiboon, S., Sansongsak, P., Rimoli, M.G., Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: Systematic optimisation of the preparative process and preliminary biological evaluation (2009) Pharmaceutical Research, 26 (8), pp. 1918-1930. , http://doi.org/10.1007/s11095-009-9908-0
  • Neuhoff, V., Arold, N., Taube, D., Ehrhardt, W., Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250 (1988) Electrophoresis, 9 (6), pp. 255-262. , http://doi.org/10.1002/elps.1150090603
  • Nishinari, K., Fang, Y., Guo, S., Phillips, G.O., Soy proteins: A review on composition, aggregation and emulsification (2014) Food Hydrocolloids, 39, pp. 301-318. , http://doi.org/10.1016/j.foodhyd.2014.01.013
  • Nowak, V., Du, J., Charrondière, U.R., Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.) (2016) Food Chemistry, 193, pp. 47-54. , http://doi.org/10.1016/j.foodchem.2015.02.111
  • Ochnio, M., Martínez, J., Allievi, M., Palavecino, M., Martínez, K., Pérez, O.E., Proteins as nano-carriers for bioactive compounds. The case of 7S and 11S soy globulins and folic (2018) Polymers, 10 (2), p. 149. , http://doi.org/10.3390/polym10020149
  • Orsini Delgado, M.C., Nardo, A., Pavlovic, M., Rogniaux, H., Añón, M.C., Tironi, V.A., Identification and characterization of antioxidant peptides obtained by gastrointestinal digestion of amaranth proteins (2016) Food Chemistry, 197, pp. 1160-1167. , http://doi.org/10.1016/j.foodchem.2015.11.092
  • Park, J.H., Lee, Y.J., Kim, Y.H., Yoon, K.S., Antioxidant and antimicrobial activities of quinoa ( Chenopodium quinoa Willd.) (2017) Seeds Cultivated in Korea, 22 (August), pp. 195-202. , http://doi.org/10.3746/pnf.2017.22.3.195
  • Pedreño, M.A., Escribano, J., Correlation between antiradical activity and stability of betanine from Beta vulgaris L roots under different pH, temperature and light conditions (2001) Journal of the Science of Food and Agriculture, 81 (7), pp. 627-631. , http://doi.org/10.1002/jsfa.851
  • Pérez, O., Carrera Sanchez, C., Rodriguez Patino, J., Pilosof, A., Adsorption dynamics and surface activity at equilibrium of whey proteins and hydroxypropyl–methyl–cellulose mixtures at the air-water interface (2007) Food Hydrocolloids, 21 (5-6), pp. 794-803. , http://doi.org/10.1016/j.foodhyd.2006.11.013
  • Pérez, O., David-Birman, T., Kesselman, E., Levi-Tal, S., Lesmes, U., Milk protein–vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impact on in vitro gastro-duodenal proteolysis (2014) Food Hydrocolloids, 38, pp. 40-47. , http://doi.org/10.1016/j.foodhyd.2013.11.010
  • Qin, Y., Zhang, Y., Yan, S., Ye, L., A comparison study on the interaction of hyperoside and bovine serum albumin with Tachiya model and Stern-Volmer equation (2010) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75 (5), pp. 1506-1510. , http://doi.org/10.1016/j.saa.2010.02.007
  • Quiroga, A.V., Martínez, E.N., Añón, M.C., Amaranth globulin polypeptide heterogeneity (2007) The Protein Journal, 26 (5), pp. 327-333. , http://doi.org/10.1007/s10930-007-9075-2
  • Rashidinejad, A., Birch, E.J., Sun-Waterhouse, D., Everett, D.W., Addition of milk to tea infusions: Helpful or harmful? Evidence from in vitro and in vivo studies on antioxidant properties (2017) Critical Reviews in Food Science and Nutrition, 57 (15), pp. 3188-3196. , http://doi.org/10.1080/10408398.2015.1099515
  • Reichert, C.L., Salminen, H., Badolato Bönisch, G., Schäfer, C., Weiss, J., Concentration effect of Quillaja saponin – Co-surfactant mixtures on emulsifying properties (2018) Journal of Colloid and Interface Science, 519, pp. 71-80. , http://doi.org/10.1016/j.jcis.2018.01.105
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay (1999) Free Radical Biology & Medicine, 26 (9-10), pp. 1231-1237
  • Ruiz, G.A., Xiao, W., Van Boekel, M., Minor, M., Stieger, M., Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd) (2016) Food Chemistry, 209, pp. 203-210. , http://doi.org/10.1016/j.foodchem.2016.04.052
  • Sanchez, H.B., Lemeur, R., Damme, P.V., Jacobsen, S.-E., Ecophysiological analysis of drought and salinity stress of quinoa ( Chenopodium quinoa Willd.) (2003) Food Reviews International, 19 (1-2), pp. 111-119. , http://doi.org/10.1081/FRI-120018874
  • Sandhya, B., Hegde, A.H., Kalanur, S.S., Katrahalli, U., Seetharamappa, J., Interaction of triprolidine hydrochloride with serum albumins: Thermodynamic and binding characteristics, and influence of site probes (2011) Journal of Pharmaceutical and Biomedical Analysis, 54 (5), pp. 1180-1186. , http://doi.org/10.1016/j.jpba.2010.12.012
  • Strack, D., Vogt, T., Schliemann, W., Recent advances in betalain research (2003) Phytochemistry, 62 (3), pp. 247-269. , http://www.ncbi.nlm.nih.gov/pubmed/12620337, Retrieved from:
  • Tang, Y., Li, X., Chen, P.X., Zhang, B., Hernandez, M., Zhang, H., Tsao, R., Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes (2015) Food Chemistry, 174, pp. 502-508. , http://doi.org/10.1016/j.foodchem.2014.11.040
  • Tang, Y., Li, X., Zhang, B., Chen, P.X., Liu, R., Tsao, R., Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes (2015) Food Chemistry, 166, pp. 380-388. , http://doi.org/10.1016/j.foodchem.2014.06.018
  • Udenigwe, C.C., Aluko, R.E., Food protein-derived bioactive peptides: Production, processing, and potential health benefits (2012) Journal of Food Science, 77 (1), pp. R11-R24. , http://doi.org/10.1111/j.1750-3841.2011.02455.x
  • Vidal, P.J., López-Nicolás, J.M., Gandía-Herrero, F., García-Carmona, F., Inactivation of lipoxygenase and cyclooxygenase by natural betalains and semi-synthetic analogues (2014) Food Chemistry, 154, pp. 246-254. , http://doi.org/10.1016/j.foodchem.2014.01.014
  • Wada, H., Masumoto-Kubo, C., Gholipour, Y., Nonami, H., Tanaka, F., Erra-Balsells, R., Rice chalky ring formation caused by temporal reduction in starch biosynthesis during osmotic adjustment under foehn-induced dry wind (2014) PLoS One, 9 (10), p. e110374
  • Wei, X.L., Xiao, J.B., Wang, Y., Bai, Y., Which model based on fluorescence quenching is suitable to study the interaction between trans-resveratrol and BSA? (2010) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75 (1), pp. 299-304. , http://doi.org/10.1016/j.saa.2009.10.027
  • Yasui, Y., Hirakawa, H., Oikawa, T., Toyoshima, M., Matsuzaki, C., Ueno, M., Fujita, Y., Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties (2016) DNA Research, 23 (6), pp. 535-546. , http://doi.org/10.1093/dnares/dsw037

Citas:

---------- APA ----------
Martínez, J.H., Velázquez, F., Burrieza, H.P., Martínez, K.D., Paula Domínguez Rubio, A., dos Santos Ferreira, C., del Pilar Buera, M.,..., Pérez, O.E. (2019) . Betanin loaded nanocarriers based on quinoa seed 11S globulin. Impact on the protein structure and antioxidant activity. Food Hydrocolloids, 87, 880-890.
http://dx.doi.org/10.1016/j.foodhyd.2018.09.016
---------- CHICAGO ----------
Martínez, J.H., Velázquez, F., Burrieza, H.P., Martínez, K.D., Paula Domínguez Rubio, A., dos Santos Ferreira, C., et al. "Betanin loaded nanocarriers based on quinoa seed 11S globulin. Impact on the protein structure and antioxidant activity" . Food Hydrocolloids 87 (2019) : 880-890.
http://dx.doi.org/10.1016/j.foodhyd.2018.09.016
---------- MLA ----------
Martínez, J.H., Velázquez, F., Burrieza, H.P., Martínez, K.D., Paula Domínguez Rubio, A., dos Santos Ferreira, C., et al. "Betanin loaded nanocarriers based on quinoa seed 11S globulin. Impact on the protein structure and antioxidant activity" . Food Hydrocolloids, vol. 87, 2019, pp. 880-890.
http://dx.doi.org/10.1016/j.foodhyd.2018.09.016
---------- VANCOUVER ----------
Martínez, J.H., Velázquez, F., Burrieza, H.P., Martínez, K.D., Paula Domínguez Rubio, A., dos Santos Ferreira, C., et al. Betanin loaded nanocarriers based on quinoa seed 11S globulin. Impact on the protein structure and antioxidant activity. Food Hydrocolloids. 2019;87:880-890.
http://dx.doi.org/10.1016/j.foodhyd.2018.09.016