Astort, A.; Colavitto, B.; Sagripanti, L.; García, H.; Echaurren, A.; Soler, S.; Ruíz, F.; Folguera, A. "Crustal and Mantle Structure Beneath the Southern Payenia Volcanic Province Using Gravity and Magnetic Data" (2019) Tectonics. 38(1):144-158
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


The Auca Mahuida volcanic field lies on the southernmost Payenia Volcanic Province, one of the broadest retroarc volcanic plateaux in the southern Central Andes (~38°S). This voluminous basaltic flooding of Quaternary age was originated from a deep asthenospheric source, interpreted as a mantle plume product of changing slab dynamics. The geometry of this source is deduced from magnetotelluric data, but the limited spatial coverage of this array does not allow a detailed resolution of this anomaly. In order to present a detailed geometry of the conductive anomaly and related crustal magmatic bodies, we used multiple data sources. We combined Magnetic and Bouguer anomalies, Curie isotherm depth (T c ), Elastic Thickness (T e ) and Moho depth derived from the Global Earth Magnetic Anomaly Grid (EMAG2) and terrestrial gravity measurements, all together in a holistic geophysical analysis. The magnetic data depict a nearly 200-km-in-diameter circular anomaly that would correspond to a dense body according to the Bouguer anomaly. Geoid data from the Gravity Field Model (EIGEN-6c4) have been filtered in order to isolate deeper mass influences and visualize the asthenospheric upwelling previously described from magnetotelluric data. Moho inversion yields a crustal attenuation at 36- to 32-km depth coinciding with T e below 20-km depth and a shallow T c (≤15-km depth) at the site where Geoid positive undulation was calculated. Finally, surface analysis allowed defining a topographic swell, compatible with the dimensions of the identified magnetic anomaly, where the main rivers deviated, potentially due to a recent base level change. ©2018. American Geophysical Union. All Rights Reserved.


Documento: Artículo
Título:Crustal and Mantle Structure Beneath the Southern Payenia Volcanic Province Using Gravity and Magnetic Data
Autor:Astort, A.; Colavitto, B.; Sagripanti, L.; García, H.; Echaurren, A.; Soler, S.; Ruíz, F.; Folguera, A.
Filiación:Laboratorio de Geodinámica, IDEAN, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
Instituto Geofísico Sismológico Ing. Volponi, Universidad Nacional de San Juan, San Juan, Argentina
Palabras clave:asthenospheric upwelling; geoid data; gravimetric data; magnetic data; Payenia Volcanic Province; surface analysis; Gravitation; Lunar surface analysis; Magnetic storage; Magnetotellurics; Surface analysis; Telluric prospecting; Volcanoes; asthenospheric upwelling; geoid data; Gravimetric data; Magnetic data; Payenia Volcanic Province; Magnetism; asthenosphere; Bouguer anomaly; crustal structure; geoid; gravimetry; gravity survey; magnetic anomaly; magnetic survey; magnetotelluric method; mantle structure; Moho; Quaternary; Argentina; Payenia Volcanic Province
Página de inicio:144
Página de fin:158
Título revista:Tectonics
Título revista abreviado:Tectonics


  • Alvers, M.R., Barrio-Alvers, L., Bodor, C., Gotze, H.J., Lahrneyer, B., Plonka, C., Schmidt, S., Quo vadis inversión? (2015) First Break, 33 (4), pp. 65-74
  • Alvers, M.R., Götze, H.J., Barrio-Alvers, L., Schmidt, S., Lahmeyer, B., Plonka, C., A novel warped-space concept for interactive 3D-geometry-inversion to improve seismic imaging (2014) First Break, 32 (4)
  • Arecco, M.A., Ruiz, F., Pizarro, G., Giménez, M., Martínez, P., Ramos, V.A., Gravimetric determination of the continental–oceanic boundary of the Argentine continental margin (from 36° S to 50° S) (2015) Geophysical Journal International, 204 (1), pp. 366-385
  • Blakely, R.J., (1996) Potential theory in gravity and magnetic applications, , Cambridge, Cambridge University Press
  • Bowin, C., Depth of principal mass anomalies contributing to the Earth's geoidal undulations and gravity anomalies* (1983) Marine Geodesy, 7 (1-4), pp. 61-100. ,
  • Breunig, M., Cremers, A.B., Götze, H.J., Schmidt, S., Seidemann, R., Shumilov, S., Siehl, A., Geological mapping based on 3D models using an Interoperable GIS (2000) GIS-HEIDELBERG, 13 (2), pp. 12-18
  • Brocher, T.M., Empirical relations between elastic wavespeeds and density in the Earth's crust (2005) Bulletin of the Seismological Society of America, 95 (6), pp. 2081-2092. ,
  • Burd, A.I., Booker, J.R., Mackie, R., Favetto, A., Pomposiello, M.C., Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5°S: Evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening (2014) Geophysical Journal International, 198 (2), pp. 812-827. ,
  • Burd, A.I., Booker, J.R., Mackie, R., Pomposiello, C., Favetto, A., Electrical conductivity of the Pampean shallow subduction region of Argentina near 33°S: Evidence for a slab window (2013) Geochemistry, Geophysics, Geosystems, 14, pp. 3192-3209. ,
  • Burov, E.B., Diament, M., The effective elastic thickness (T e) of continental lithosphere: What does it really mean? (1995) Journal of Geophysical Research, 100 (B3), pp. 3905-3927. ,
  • Chulick, G.S., Detweiler, S., Mooney, W.D., Seismic structure of the crust and uppermost mantle of south america and surrounding oceanic basins (2013) Journal of South American Earth Sciences, 42, pp. 260-276. ,
  • Cox, K.G., The role of mantle plumes in the development of continental drainage patterns (1989) Nature, 342 (6252), pp. 873-877. ,
  • Folguera, A., Introcaso, A., Giménez, M., Ruiz, F., Martinez, P., Tunstall, C., García Morabito, E., Ramos, V.A., Crustal attenuation in the Southern Andean retroarc (38–39° 30′ S) determined from tectonic and gravimetric studies: The Lonco-Luán asthenospheric anomaly (2007) Tectonophysics, 439 (1-4), pp. 129-147. ,
  • Folguera, A., Naranjo, J.A., Orihashi, Y., Sumino, H., Nagao, K., Polanco, E., Ramos, V.A., Retroarc volcanism in the northern San Rafael Block (34–35° 30′ S), southern Central Andes: Occurrence, age, and tectonic setting (2009) Journal of Volcanology and Geothermal Research, 186 (3-4), pp. 169-185. ,
  • Folguera, A., Ramos, V.A., Repeated eastward shifts of arc magmatism in the southern Andes: A revision to the long-term pattern of Andean uplift and magmatism (2011) Journal of South American Earth Sciences, 32 (4), pp. 531-546. ,
  • Förste, C., Bruinsma, S., Abrikosov, O., Flechtner, F., Marty, J.C., Lemoine, J.M., Dahle, C., Biancale, R., (2014) EIGEN-6C4—The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse, , In EGU General Assembly Conference Abstracts (16)
  • Frost, B.R., Shive, P.N., Magnetic mineralogy of the lower continental crust (1986) Journal of Geophysical Research, 91 (B6), pp. 6513-6521. ,
  • García, H., Soler, S., Gianni, G.M., Ruiz, F., (2016) Análisis flexural de la cuenca Cretácico-Paleógena del noroeste Argentino, , La subcuenca Lomas de Olmedo zona de transición entre dos mecanismos de deformación distintivos, In Primer Simposio de Tectónica Sudamericana. Chile
  • García, H.P., Gianni, G.M., Lupari, M.N., Sánchez, M.A., Soler, S.R., Ruiz, F., Klinger, F.G.L., Effective elastic thickness in the Central Andes. Correlation to orogenic deformation styles and lower crust high-gravity anomaly (2017) Journal of South American Earth Sciences, 87, pp. 232-246
  • Gardner, G.H.F., Gardner, L.W., Gregory, A.R., Formation velocity and density—The diagnostic basics for stratigraphic traps (1974) Geophysics, 39 (6), pp. 770-780. ,
  • Gianni, G.M., García, H.P., Lupari, M., Pesce, A., Folguera, A., Plume overriding triggers shallow subduction and orogeny in the southern Central Andes (2017) Gondwana Research, 49, pp. 387-395. ,
  • Gilbert, H., Beck, S., Zandt, G., Lithospheric and upper mantle structure of Central Chile and Argentina (2006) Geophysical Journal International, 165 (1), pp. 383-398. ,
  • Götze, H.J., (1984) Über den Einsatz interaktiver Computergraphik im Rahmen 3-dimensionaler Interpretationstechniken in Gravimetrie und Magnetik, , (Doctoral dissertation, Technische Universität Clausthal)
  • Götze, H.J., Potential methods and geoinformation systems (2014) Handbook of Geomathematics, pp. 1-21. , Berlin, Germany, Springer
  • Götze, H.J., Kirchner, A., Gravity field at the South American active margin (20 to 29°S) (1997) Journal of South American Earth Sciences, 10 (2), pp. 179-188. ,
  • Götze, H.J., Lahmeyer, B., Application of three-dimensional interactive modeling in gravity, and magnetics (1988) Geophysics, 53 (8), pp. 1096-1108
  • Götze, H.J., Schmidt, S., Menzel, P., Integrative interpretation of potential field data by 3D-modeling and visualization (2017) Oil Gas European Magazine, 43 (4), pp. 202-208
  • Grant, F.S., Dodds, J., (1972) MAGMAP FFT processing system development notes, , Toronto, Canada, Paterson Grant and Watson Ltd
  • Gudnason, J., Holm, P.M., Søager, N., Llambías, E.J., Geochronology of the late Pliocene to recent volcanic activity in the Payenia back-arc volcanic province, Mendoza Argentina (2012) Journal of South American Earth Sciences, 37, pp. 191-201. ,
  • Hack, J.T., Stream-profile analysis and stream-gradient index (1973) Journal of Research of the US Geological Survey, 1 (4), pp. 421-429
  • Holm, P.M., Søager, N., Alfastsen, M., Bertotto, G.W., Subduction zone mantle enrichment by fluids and Zr–Hf-depleted crustal melts as indicated by backarc basalts of the Southern Volcanic Zone, Argentina (2016) Lithos, 262, pp. 135-152. ,
  • Introcaso, A., (1997) Gravimetría, Rosario, UNR Editora
  • Kay, S.M., Burns, W.M., Copeland, P., Mancilla, O., Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin (2006) Geological Society of America Special Papers, 407, pp. 19-60
  • Kay, S.M., Copeland, P., Early to middle Miocene backarc magmas of the Neuquén Basin: Geochemical consequences of slab shallowing and the westward drift of South America (2006) Geological Society of America Special Papers, 407, pp. 185-213
  • Kay, S.M., Godoy, E., Kurtz, A., Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes (2005) Geological Society of America Bulletin, 117 (1), pp. 67-88. ,
  • Kay, S.M., Mancilla, O., Copeland, P., Evolution of the late Miocene Chachahuén volcanic complex at 37° S over a transient shallow subduction zone under the Neuquén Andes (2006) Geological Society of America Special Papers, 407, pp. 215-246
  • Keller, E.A., Gurrola, L., Tierney, T.E., Geomorphic criteria to determine direction of lateral propagation of reverse faulting and folding (1999) Geology, 27 (6), pp. 515-518. ,<0515:GCTDDO>2.3.CO;2
  • Kirby, E., Whipple, K.X., Expression of active tectonics in erosional landscapes (2012) Journal of Structural Geology, 44, pp. 54-75. ,
  • LaFehr, T.R., An exact solution for the gravity curvature (Bullard B) correction (1991) Geophysics, 56 (8), pp. 1179-1184. ,
  • Lopez-Escobar, L., Frey, F.A., Vergara, M., Andesites and high-alumina basalts from the central-south Chile High Andes: Geochemical evidence bearing on their petrogenesis (1977) Contributions to Mineralogy and Petrology, 63 (3), pp. 199-228. ,
  • MacLeod, I.N., Jones, K., Dai, T.F., 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes (1993) Exploration Geophysics, 24 (3-4), pp. 679-688. ,
  • Marchetti, D.W., Hynek, S.A., Cerling, T.E., Cosmogenic 3 He-exposure ages of basalt flows in the northwestern Payún Matru volcanic field, Mendoza Province, Argentina (2014) Quaternary Geochronology, 19, pp. 67-75. ,
  • Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Tontini, F.C., EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements (2009) Geochemistry, Geophysics, Geosystems, 11. ,
  • May, V., Chivas, A., Dosseto, A., Honda, M., Matchan, E., Phillips, D., Price, D., Quaternary volcanic evolution in the continental back-arc of southern Mendoza, Argentina (2018) Journal of South American Earth Sciences, 84, pp. 88-103. ,
  • Molin, P., Fubelli, G., Nocentini, M., Sperini, S., Ignat, P., Grecu, F., Dramis, F., Interaction of mantle dynamics, crustal tectonics, and surface processes in the topography of the Romanian Carpathians: A geomorphological approach (2012) Global and Planetary Change, 90, pp. 58-72
  • Nagy, D., The gravitational attraction of a right rectangular prism (1966) Geophysics, 31 (2), pp. 362-371. ,
  • Nivière, B., Messager, G., Carretier, S., Lacan, P., Geomorphic expression of the southern Central Andes forebulge (37° S, Argentina) (2013) Terra Nova, 25 (5), pp. 361-367. ,
  • Oldenburg, D.W., The inversion and interpretation of gravity anomalies (1974) Geophysics, 39 (4), pp. 526-536. ,
  • Parsons, T., Thompson, G.A., Sleep, N.H., Mantle plume influence on the Neogene uplift and extension of the US western Cordillera? (1994) Geology, 22 (1), pp. 83-86. ,<0083:MPIOTN>2.3.CO;2
  • Pazzaglia, F.J., Gardner, T.W., Merritts, D.J., Bedrock fluvial incision and longitudinal profile development over geologic time scales determined by fluvial terraces (1998) Rivers Over Rock, Fluvial Processes in Bedrock Channels, 107, pp. 207-236. , Geophysical Monograph Series,). Washington, DC American Geophysical Union
  • Pesicek, J.D., Engdahl, E.R., Thurber, C.H., DeShon, H.R., Lange, D., Mantle subducting slab structure in the region of the 2010 M 8.8 Maule earthquake (30–40° S), Chile (2012) Geophysical Journal International, 191 (1), pp. 317-324. ,
  • Rainbird, R.H., Ernst, R.E., The sedimentary record of mantle-plume uplift (2001) Special Papers-Geological Society of America, pp. 227-246
  • Rajagopalan, S., Analytic signal vs. reduction to pole: Solutions for low magnetic latitudes (2003) Exploration Geophysics, 34 (4), pp. 257-262. ,
  • Ramos, V.A., Folguera, A., Andean flat-slab subduction through time (2009) Geological Society, London, Special Publications, 327 (1), pp. 31-54. ,
  • Ramos, V.A., Folguera, A., Payenia volcanic province in the Southern Andes: An appraisal of an exceptional Quaternary tectonic setting (2011) Journal of Volcanology and Geothermal Research, 201 (1-4), pp. 53-64. ,
  • Ramos, V.A., Kay, S.M., Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35–39° S latitude) (2006) Geological Society of America Special Papers, 407, pp. 1-17
  • Rapela, C.W., Kay, S.M., Late Paleozoic to recent magmatic evolution of northern Patagonia (1988) Episodes, 11 (3), pp. 175-182
  • Richarte, D., Lupari, M., Pesce, A., Nacif, S., Gimenez, M., 3-D crustal-scale gravity model of the San Rafael Block and Payenia volcanic province in Mendoza, Argentina (2018) Geoscience Frontiers, 9 (1), pp. 239-248. ,
  • Roest, W.R., Verhoef, J., Pilkington, M., Magnetic interpretation using the 3-D analytic signal (1992) Geophysics, 57 (1), pp. 116-125. ,
  • Ruiz, F., Introcaso, A., Curie point depths beneath Precordillera Cuyana and sierras Pampeanas obtained from spectral analysis of magnetic anomalies (2004) Gondwana Research, 7 (4), pp. 1133-1142. ,
  • Sacek, V., Ussami, N., Reappraisal of the effective elastic thickness for the sub-Andes using 3-D finite element flexural modelling, gravity and geological constraints (2009) Geophysical Journal International, 179 (2), pp. 778-786. ,
  • Saunders, A.D., England, R.W., Reichow, M.K., White, R.V., A mantle plume origin for the Siberian traps: Uplift and extension in the West Siberian Basin, Russia (2005) Lithos, 79 (3-4), pp. 407-424. ,
  • Schmidt, S., Götze, H.J., Interactive visualization and modification of 3D-models using GIS- functions (1998) Physics and Chemistry of the Earth, 23 (3), pp. 289-295. ,
  • Schmidt, S., Plonka, C., Götze, H.J., Lahmeyer, B., Hybrid modelling of gravity, gravity gradients and magnetic fields (2011) Geophysical Prospecting, 59 (6), pp. 1046-1051. ,
  • Schwanghart, W., Kuhn, N.J., TopoToolbox: A set of Matlab functions for topographic analysis (2010) Environmental Modelling & Software, 25 (6), pp. 770-781. ,
  • Schwanghart, W., Scherler, D., TopoToolbox 2-MATLAB-based software for topographic analysis and modeling in Earth surface sciences (2014) Earth Surface Dynamics, 2 (1), pp. 1-7. ,
  • Sigismondi, M.E., (2012) Estudio de la deformación litosférica de la cuenca Neuquina: estructura termal, datos de gravedad y sísmica de reflexión, , (Doctoral dissertation, Ph. D. Thesis, Universidad de Buenos Aires, Buenos Aires, 1–367)
  • Søager, N., Holm, P.M., Llambías, E.J., Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment (2013) Chemical Geology, 349, pp. 36-53
  • Søager, N., Portnyagin, M., Hoernle, K., Holm, P.M., Hauff, F., Garbe-Schönberg, D., Olivine major and trace element compositions in southern Payenia basalts, Argentina: Evidence for pyroxenite–peridotite melt mixing in a back-arc setting (2015) Journal of Petrology, 56 (8), pp. 1495-1518. ,
  • Soler, S.R., (2015) Métodos Espectrales para la Determinación de la Profundidad del Punto de Curie y el Espesor Elástico de la Corteza Terrestre, , Master's thesis, Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario
  • Spagnuolo, M.G., Orts, D.L., Gimenez, M., Folguera, A., Ramos, V.A., Payenia quaternary flood basalts (southern Mendoza, Argentina): Geophysical constraints on their volume (2016) Geoscience Frontiers, 7 (5), pp. 775-782. ,
  • Stern, C.R., Active Andean volcanism: Its geologic and tectonic setting (2004) Revista Geologica de Chile, 31 (2), pp. 161-206
  • Tanaka, A., Okubo, Y., Matsubayashi, O., Curie point depth based on spectrum analysis of the magnetic anomaly data in east and Southeast Asia (1999) Tectonophysics, 306 (3-4), pp. 461-470. ,
  • Tassara, A., Echaurren, A., Anatomy of the Andean subduction zone: Three-dimensional density model upgraded and compared against global-scale models (2012) Geophysical Journal International, 189 (1), pp. 161-168. ,
  • Tassara, A., Götze, H.J., Schmidt, S., Hackney, R., Three-dimensional density model of the Nazca plate and the Andean continental margin (2006) Journal of Geophysical Research, 111. ,
  • Turcotte, D.L., Schubert, G., (2002) Geodynamics, p. 456. ,, (p., New York, Cambridge University Press
  • Watts, A.B., (2001) Isostasy and flexure of the lithosphere, , Cambridge, Cambridge University Press
  • Whipple, K.X., Bedrock rivers and the geomorphology of active orogens (2004) Annual Review of Earth and Planetary Sciences, 32 (1), pp. 151-185. ,
  • Whipple, K.X., Tucker, G.E., Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs (1999) Journal of Geophysical Research, 104 (B8), pp. 17,661-17,674. ,
  • Wobus, C., Whipple, K.X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., Sheehan, D., Tectonics from topography: Procedures, promise, and pitfalls (2006) Geological Society of America Special Papers, 398, pp. 55-74


---------- APA ----------
Astort, A., Colavitto, B., Sagripanti, L., García, H., Echaurren, A., Soler, S., Ruíz, F.,..., Folguera, A. (2019) . Crustal and Mantle Structure Beneath the Southern Payenia Volcanic Province Using Gravity and Magnetic Data. Tectonics, 38(1), 144-158.
---------- CHICAGO ----------
Astort, A., Colavitto, B., Sagripanti, L., García, H., Echaurren, A., Soler, S., et al. "Crustal and Mantle Structure Beneath the Southern Payenia Volcanic Province Using Gravity and Magnetic Data" . Tectonics 38, no. 1 (2019) : 144-158.
---------- MLA ----------
Astort, A., Colavitto, B., Sagripanti, L., García, H., Echaurren, A., Soler, S., et al. "Crustal and Mantle Structure Beneath the Southern Payenia Volcanic Province Using Gravity and Magnetic Data" . Tectonics, vol. 38, no. 1, 2019, pp. 144-158.
---------- VANCOUVER ----------
Astort, A., Colavitto, B., Sagripanti, L., García, H., Echaurren, A., Soler, S., et al. Crustal and Mantle Structure Beneath the Southern Payenia Volcanic Province Using Gravity and Magnetic Data. Tectonics. 2019;38(1):144-158.