Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Reproduction is strongly influenced by environmental temperature in insects. At high temperature, mating success could be influenced not only by basal (non-inducible) thermotolerance but also by inducible plastic responses. Here, mating success at high temperature was tested in flies carrying contrasting genotypes of heat resistance in Drosophila melanogaster. The possible heat-hardening effect was tested. Mating success did not differ between heat-resistant and heat-sensitive genotypes when tested both at high (33 °C) and benign (25 °C) temperature, independently of the heat-hardening status. Importantly, heat-hardening pre-treatment increased in a 70% the number of matings at 33 °C in a mass-mating experiment. Further, mating latency at 33 °C was shorter with heat hardening than without it in single-pair assays Heat-hardening had previously been showed to improve short-term thermotolerance in many organisms including Drosophila, and the present results show that heat hardening also improve mating success at elevated temperature. Previous exposures to a mild heat stress improve short-term mating success as a plastic response of ecological relevance. Such heat-hardening effects on mating success should be relevant for predicting potential evolutionary responses to any possible current scenery of global warming, as well as in sterile insect release programs for pest control in elevated temperature environments. © 2019 Elsevier Ltd

Registro:

Documento: Artículo
Título:Heat-hardening effects on mating success at high temperature in Drosophila melanogaster
Autor:Stazione, L.; Norry, F.M.; Sambucetti, P.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución (IEGEBA), Buenos Aires, Argentina
Palabras clave:Heat-hardening; Mating success; Phenotypic plasticity; Quantitative Trait Loci (QTL); Thermotolerance; animal experiment; article; Drosophila melanogaster; environmental temperature; genotype; greenhouse effect; heat stress; heat tolerance; high temperature; mating success; nonhuman; pest control; phenotypic plasticity; quantitative trait locus
Año:2019
Volumen:80
Página de inicio:172
Página de fin:177
DOI: http://dx.doi.org/10.1016/j.jtherbio.2019.02.001
Título revista:Journal of Thermal Biology
Título revista abreviado:J. Therm. Biol.
ISSN:03064565
CODEN:JTBID
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_03064565_v80_n_p172_Stazione

Referencias:

  • Akaike, H., Information theory as an extension of the maximum likelihood principle (1973) Proceedings of the Second International Symposium on Information Theory, pp. 267-281. , B.N. Petrov F. Csaki Akadémiai Kiadó Budapest
  • Angilletta, M.J., Jr, Huey, R.B., Frazier, M.R., Thermodynamic effects on organismal performance: is hotter better? (2009) Physiol. Biochem. Zool., 83, pp. 197-206
  • Arias, L.N., Sambucetti, P., Scannapieco, A.C., Loeschcke, V., Norry, F.M., Survival to heat stress with and without heat-hardening in Drosophila melanogaster: interactions with larval density (2012) J. Exp. Biol., 215, pp. 2220-2225
  • Bates, D., Maechler, M., Bolker, B., Walker, S., (2013), http://CRAN.R-project.org/package=lme4, lme4: linear mixed-effects models using Eigen and S4. R package version 1.0-5. (Accessed 15 March 2016); Bates, D., Kliegl, R., Vasishth, S., Baayen, H., Parsimonious mixed models (2015) J. Mem. Lang. arXiv Prepr. arXiv, 1506, p. 04967
  • Bloem, S., Carpenter, J.E., Bloem, K.A., Tomlin, L., Taggart, S., Effect of rearing strategy and gamma radiation on field competitiveness of mass-reared codling moths (Lepidoptera: tortricidae) (2004) J. Econ. Entomol., 97, pp. 1891-1989
  • Borda, M.A., Sambucetti, P.D., Gomez, F.H., Norry, F.M., Genetic variation for egg-to-adult survival in Drosophila melanogaster in a set of recombinant inbred lines reared under heat stress in a natural thermal environment (2018) Entomol. Exp. Appl. (Entomologia Experimentalis et applicata), 166, pp. 863-872
  • Bubliy, O.A., Loeschcke, V., Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster (2005) J. Evol. Biol., 18, pp. 789-803
  • Bowler, K., Terblanche, J.S., Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? (2008) Biol. Rev., 83, pp. 339-355
  • Brooks, R., Endler, J.A., Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poecilia reticulata) (2001) Evolution, 55, pp. 1002-1015
  • Chidawanyika, F., Terblanche, J.S., Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: tortricidae): implications for pest control and the sterile insect release programme (2011) Evolut. Appl., 4, pp. 534-544
  • Dahlgaard, J., Loeschcke, V., Michalak, P., Justesen, J., Induced thermotolerance and associated expression of the heat-shock protein hsp70 in adult Drosophila melanogaster (1998) Funct. Ecol., 12, pp. 786-793
  • Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C., Impacts of climate warming on terrestrial ectotherms across latitude (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 6668-6672
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., (2017), http://www.infostat.com.ar, InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL (Accessed 15 March 2016); Dolgin, E.S., Whitlock, M.C., Agrawal, A.F., Male Drosophila melanogaster have higher mating success when adapted to their thermal environment (2006) J. Evol. Biol., 19, pp. 1894-1900
  • Fasolo, A.G., Krebs, R.A., A comparison of behavioural change in Drosophila during exposure to thermal stress (2004) Biol. J. Linn. Soc., 83, pp. 197-205
  • Feder, M.E., Hofmann, G.E., Heat-shock proteins, molecular chaperones, and the stress response (1999) Annu. Rev. Physiol., 61, pp. 243-282
  • Franks, S.J., Hoffmann, A.A., Genetics of climate change adaptation (2012) Annu. Rev. Genet., 46, pp. 185-208
  • Hoffmann, A.A., Anderson, A., Hallas, R., Opposing clines for high and low temperature resistance in Drosophila melanogaster (2002) Ecol. Lett., 5, pp. 614-618
  • Hoffmann, A.A., Daborn, P.J., Towards genetic markers in animal populations as biomonitors for human induced environmental change (2007) Ecol. Lett., 10, pp. 63-76
  • Hoffmann, A.A., Sgro, C.M., Climate change and evolutionary adaptation (2011) Nature, 470, pp. 479-485
  • Hoffmann, A.A., Parsons, A., Evolutionary Genetics and Environmental Stress (1991), Oxford University Press Oxford; Hoffmann, A.A., Sørensen, J., Loeschcke, V., Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches (2003) J. Therm. Biol., 28, pp. 175-216
  • Jørgensen, K.T., Sørensen, J.G., Bundgaard, J., Heat tolerance and the effect of mild heat stress on reproductive characters in Drosophila buzzatii males (2006) J. Therm. Biol., 31, pp. 280-286
  • Kellermann, V., Overgaard, J., Hoffmann, A.A., Flojgaard, C., Svenning, J.C., Loeschcke, V., Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically (2012) Proc. Natl. Acad. Sci. USA, 10, pp. 16228-16233
  • Kellermann, V., van Heerwaarden, B., Sgrò, C.M., Hoffmann, A.A., Fundamental evolutionary limits in ecological traits drives Drosophila species distributions (2009) Science, 325, pp. 1244-1246
  • Kelly, M.W., Sanford, E., Grosberg, R.K., Limited potential for adaptation to climate change in a broadly distributed marine crustacean (2012) Proc. Roy. Soc. B-Biol. Sci., 279, pp. 349-356
  • Krebs, R.A., Loeschcke, V., Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster (1994) J. Evol. Biol., 7, pp. 39-49
  • Krebs, R.A., Loeschcke, V., Acclimation and selection for increased resistance to thermal stress in Drosophila buzzatii (1996) Genetics, 142, pp. 471-479
  • Loeschcke, V., Hoffmann, A.A., Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature (2007) Am. Nat., 169, pp. 175-183
  • Loeschcke, V., Kristensen, T.N., Norry, F.M., Consistent effects of a major QTL for thermal resistance in field-released Drosophila melanogaster (2011) J. Insect Physiol., 57, pp. 1227-1231
  • Manenti, T., Loeschcke, V., Sørensen, J.G., Constitutive up-regulation of Turandot genes rather than changes in acclimation ability is associated with the evolutionary adaptation to temperature fluctuations in Drosophila simulans (2018) J. Insect Physiol., 104, pp. 40-47
  • Morgan, T.J., Mackay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242
  • Norry, F.M., Dahlgaard, J., Loeschcke, V., Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster (2004) Mol. Ecol., 13, pp. 3585-3594
  • Norry, F.M., Sambucetti, P., Scannapieco, A.C., Gomez, F.H., Loeschcke, V., X-linked QTL for knockdown resistance to high temperature in Drosophila melanogaster (2007) Insect Mol. Biol., 16, pp. 509-513
  • Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., Loeschcke, V., Quantitative trait loci for heat-hardening acclimation, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2008) Mol. Ecol., 17, pp. 4570-4581
  • Norry, F.M., Larsen, P.F., Liu, Y., Loeschcke, V., Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster (2009) J. Insect Physiol., 55, pp. 1050-1057
  • (2017), https://www.R-project.org/, R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL (Accessed 15 March 2016); Rako, L., Hoffmann, A.A., Complexity of acclimation response in Drosophila melanogaster (2006) J. Insect Physiol., 52, pp. 94-104
  • Rand, D.M., Weinreich, D.M., Lerman, D., Folk, D., Gilchrist, G.W., Three selections are better than one: clinal variation of thermal QTL from independent selection experiments in Drosophila (2010) Evolution, 64, pp. 2921-2934
  • Reusch, T.B.H., Wood, T.E., Molecular ecology of global change (2007) Mol. Ecol., 16, pp. 3973-3992
  • Sambucetti, P., Norry, F.M., Mating success at high temperature in highland- and lowland-derived populations as well as in heat knock-down selected Drosophila buzzatii (2015) Entomol. Exp. Appl., 154, pp. 206-212
  • Sambucetti, P., Scannapieco, A.C., Loeschcke, V., Norry, F.M., Heat-stress survival in the pre-adult stage of the life cycle in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2013) J. Exp. Biol., 216, pp. 2953-2959
  • Sambucetti, P., Scannapieco, A.C., Norry, F.M., Direct and correlated responses to artificial selection for high and low knockdown resistance to high temperature in Drosophila buzzatii (2010) J. Therm. Biol., 35, pp. 232-238
  • Schilthuizen, M., Kellermann, V., Contemporary climate change and terrestrial invertebrates: evolutionary versus plastic changes (2014) Evolut. Appl., 7, pp. 56-67
  • Sgrò, C.M., Terblanche, J.S., Hoffmann, A.A., What can plasticity contribute to insect responses to climate change? (2016) Annu. Rev. Entomol., 61, pp. 433-451
  • Sørensen, J.G., Kristensen, T.N., Loeschcke, V., The evolutionary and ecological role of heat shock proteins (2003) Ecol. Lett., 6, pp. 1025-1037
  • Sørensen, J.G., Kristensen, T.N., Overgaard, J., Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change? (2016) Curr. Opin. Insect Sci., 17, pp. 98-104
  • Stazione, L., Norry, F.M., Sambucetti, P., Thermal specific patterns of longevity and fecundity in a set of heat-sensitive and heat-resistant genotypes of Drosophila melanogaster (2017) Entomol. Exp. Appl., 165, pp. 159-168
  • Takahashi, K.H., Okada, Y., Teramura, K., Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster (2011) BMC Genet., 12, p. 57
  • Van Heerwaarden, B., Kellermann, V., Sgro, C.M., Limited scope for plasticity to increase upper thermal limits (2016) Funct. Ecol., 30, pp. 1947-1956

Citas:

---------- APA ----------
Stazione, L., Norry, F.M. & Sambucetti, P. (2019) . Heat-hardening effects on mating success at high temperature in Drosophila melanogaster. Journal of Thermal Biology, 80, 172-177.
http://dx.doi.org/10.1016/j.jtherbio.2019.02.001
---------- CHICAGO ----------
Stazione, L., Norry, F.M., Sambucetti, P. "Heat-hardening effects on mating success at high temperature in Drosophila melanogaster" . Journal of Thermal Biology 80 (2019) : 172-177.
http://dx.doi.org/10.1016/j.jtherbio.2019.02.001
---------- MLA ----------
Stazione, L., Norry, F.M., Sambucetti, P. "Heat-hardening effects on mating success at high temperature in Drosophila melanogaster" . Journal of Thermal Biology, vol. 80, 2019, pp. 172-177.
http://dx.doi.org/10.1016/j.jtherbio.2019.02.001
---------- VANCOUVER ----------
Stazione, L., Norry, F.M., Sambucetti, P. Heat-hardening effects on mating success at high temperature in Drosophila melanogaster. J. Therm. Biol. 2019;80:172-177.
http://dx.doi.org/10.1016/j.jtherbio.2019.02.001