Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We analyse the interplay between maximal/minimal/adjoint ideals of multilinear operators (between sequence spaces) and their associated Köthe sequence spaces. We establish relationships with spaces of multipliers and apply these results to describe diagonal multilinear operators from Lorentz sequence spaces. We also define and study some properties of the ideal of (E, p)-summing multilinear mappings, a natural extension of the linear ideal of absolutely (E, p)-summing operators. © 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group.

Registro:

Documento: Artículo
Título:Diagonal multilinear operators on Köthe sequence spaces
Autor:Dimant, V.; Villafañe, R.
Filiación:Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina
CONICET, Argentina
Departamento de Matemática - Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
IMAS–CONICET, Argentina
Palabras clave:46A45; 47H60; 47L22; diagonal multilinear operators; Köthe sequence spaces; Multilinear ideals
Año:2019
Volumen:67
Número:2
Página de inicio:248
Página de fin:266
DOI: http://dx.doi.org/10.1080/03081087.2017.1417968
Título revista:Linear and Multilinear Algebra
Título revista abreviado:Linear Multilinear Algebra
ISSN:03081087
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_03081087_v67_n2_p248_Dimant

Referencias:

  • Carl, B., A remark on p-integral and p-absolutely summing operators from lu into lv (1976) Stud Math, 57 (3), pp. 257-262
  • König, H., Diagonal and convolution operators as elements of operator ideals (1975) Math Ann, 218 (2), pp. 97-106
  • Pietsch, A., (1980) Operator ideals, , Berlin: Deutsch. Verlag Wiss
  • Defant, A., Mastyło, M., Michels, C., Summing norms of identities between unitary ideals (2006) Math Z, 252 (4), pp. 863-882
  • Buntinas, M., Goes, G., Products of sequence spaces and multipliers (1987) Rad Mat, 3 (2), pp. 287-300
  • Aywa, S., Fourie, J.H., On summing multipliers and applications (2001) J Math Anal Appl, 253 (1), pp. 166-186
  • Karapınar, E., Nuclearity and multipliers between Banach spaces (2007) Int J Contemp Math Sci, 2 (29-32), pp. 1601-1606
  • Kolwicz, P., Leśnik, K., Maligranda, L., Pointwise multipliers of Calderón-Lozanovskiĭ spaces (2013) Math Nachr, 286 (8-9), pp. 876-907
  • Kolwicz, P., Leśnik, K., Maligranda, L., Pointwise products of some Banach function spaces and factorization (2014) J Funct Anal, 266 (2), pp. 616-659
  • Pietsch, A., Ideals of multilinear functionals (designs of a theory) (1984) Proceedings of the second international conference on operator algebras, ideals, and their applications in theoretical physics (Leipzig, 1983), 67, pp. 185-199. , of, Leipzig: Teubner,. In:,.,. p
  • Pérez-García, D., Comparing different classes of absolutely summing multilinear operators (2005) Arch Math (Basel), 85 (3), pp. 258-267
  • Çalişkan, E., Pellegrino, D.M., On the multilinear generalizations of the concept of absolutely summing operators (2007) Rocky Mountain J Math, 37 (4), pp. 1137-1154
  • Pellegrino, D., Santos, J., Absolutely summing multilinear operators: a panorama (2011) Quaest Math, 34 (4), pp. 447-478
  • Floret, K., García, D., On ideals of polynomials and multilinear mappings between Banach spaces (2003) Arch Math (Basel), 81 (3), pp. 300-308
  • Floret, K., Hunfeld, S., Ultrastability of ideals of homogeneous polynomials and multilinear mappings on Banach spaces (2002) Proc Am Math Soc, 130 (5), pp. 1425-1435. , electronic
  • Dineen, S., (1999) Complex analysis on infinite-dimensional spaces, , London: Springer-Verlag
  • Mujica, J., (1986) Complex analysis in Banach spaces, 120. , of, Amsterdam: North-Holland, Holomorphic functions and domains of holomorphy finite and infinite dimensions, Notas de Matemà tica [Mathematical Notes], 107
  • Carando, D., Dimant, V., Sevilla-Peris, P., Limit orders and multilinear forms on lp spaces (2006) Publ Res Inst Math Sci, 42 (2), pp. 507-522
  • Carando, D., Dimant, V., Sevilla-Peris, P., Multilinear Hölder-type inequalities on Lorentz sequence spaces (2009) Stud Math, 195 (2), pp. 127-146
  • Carando, D., Dimant, V., Sevilla-Peris, P., Diagonal extendible multilinear operators between lp-spaces (2014) Rev R Acad Cienc Exactas Fís Nat Ser A Math, 108 (2), pp. 541-555
  • Bennett, C., Sharpley, R., (1988) Interpolation of operators, 129. , Boston (MA): Academic Press
  • Lindenstrauss, J., Tzafriri, L., (1979) Classical Banach spaces. II, 97. , of, Berlin: Springer-Verlag, Function spaces
  • Lindenstrauss, J., Tzafriri, L., (1977) Classical Banach spaces. I, 92. , Berlin: Springer-Verlag
  • Floret, K., Minimal ideals of n-homogeneous polynomials on Banach spaces (2001) Results Math, 39 (3-4), pp. 201-217
  • Defant, A., Floret, K., (1993) Tensor norms and operator ideals, 176. , Amsterdam: North-Holland
  • Floret, K., (2002) On ideals of n-homogeneous polynomials on Banach spaces, pp. 19-38. , Athens: University of Athens,. In:,. p
  • Defant, A., Mastylo, M., Michels, C., Summing inclusion maps between symmetric sequence spaces (2002) Trans Am Math Soc, 354 (11), pp. 4473-4492. , electronic
  • Reisner, S., A factorization theorem in Banach lattices and its application to Lorentz spaces (1981) Ann Inst Fourier (Grenoble), 31 (1), pp. 239-255
  • Garling, D.J.H., A class of reflexive symmetric BK-spaces (1969) Can J Math, 21, pp. 602-608
  • Allen, G.D., Duals of Lorentz spaces (1978) Pac J Math, 77 (2), pp. 287-291
  • Reisner, S., On the duals of Lorentz function and sequence spaces (1982) Indiana Univ Math J, 31 (1), pp. 65-72
  • Kamińska, A., Lee, H.J., On uniqueness of extension of homogeneous polynomials (2006) Houston J Math, 32 (1), pp. 227-252. , electronic
  • Choi, Y.S., Han, K.H., Boundaries for algebras of holomorphic functions on Marcinkiewicz sequence spaces (2006) J Math Anal Appl, 323 (2), pp. 1116-1133
  • Kamińska, A., Lee, H.J., M-ideal properties in Marcinkiewicz spaces (2004) Comment Math Prace Mat (Tomus specialis in Honorem Juliani Musielak), 2004, pp. 123-144
  • Serrano-Rodríguez, D., Absolutely γ-summing multilinear operators (2013) Linear Algebra Appl, 439 (12), pp. 4110-4118
  • Botelho, G., Campos, J.R., On the transformation of vector-valued sequences by linear and multilinear operators (2017) Monatsh. Math, 183 (3), pp. 415-435
  • Matos, M.C., On multilinear mappings of nuclear type (1993) Rev Mat Univ Complut Madrid, 6 (1), pp. 61-81
  • Schneider, B., On absolutely p-summing and related multilinear mappings (1991) Wissenschaftliche Zeitschrift der Brandemburger Landeshochschule, 35 (1991), pp. 105-117
  • Meléndez, Y., Tonge, A., Polynomials and the Pietsch domination theorem (1999) Math Proc R Ir Acad, 99A (2), pp. 195-212
  • Botelho, G., Michels, C., Pellegrino, D., Complex interpolation and summability properties of multilinear operators (2010) Rev Mat Complut, 23 (1), pp. 139-161
  • Dimant, V., Strongly p-summing multilinear operators (2003) J Math Anal Appl, 278 (1), pp. 182-193

Citas:

---------- APA ----------
Dimant, V. & Villafañe, R. (2019) . Diagonal multilinear operators on Köthe sequence spaces. Linear and Multilinear Algebra, 67(2), 248-266.
http://dx.doi.org/10.1080/03081087.2017.1417968
---------- CHICAGO ----------
Dimant, V., Villafañe, R. "Diagonal multilinear operators on Köthe sequence spaces" . Linear and Multilinear Algebra 67, no. 2 (2019) : 248-266.
http://dx.doi.org/10.1080/03081087.2017.1417968
---------- MLA ----------
Dimant, V., Villafañe, R. "Diagonal multilinear operators on Köthe sequence spaces" . Linear and Multilinear Algebra, vol. 67, no. 2, 2019, pp. 248-266.
http://dx.doi.org/10.1080/03081087.2017.1417968
---------- VANCOUVER ----------
Dimant, V., Villafañe, R. Diagonal multilinear operators on Köthe sequence spaces. Linear Multilinear Algebra. 2019;67(2):248-266.
http://dx.doi.org/10.1080/03081087.2017.1417968