Iglesias, I.; Quindimil, A.; Mariño, F.; De-La-Torre, U.; González-Velasco, J.R. "Zr promotion effect in CO 2 methanation over ceria supported nickel catalysts" (2019) International Journal of Hydrogen Energy. 44(3):1710-1719
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Carbon dioxide methanation is an interesting way to reduce greenhouse effect gases emission and, simultaneously, provide a renewable energy source of methane. Ceria and 15 at.% Zr-doped ceria supported nickel catalysts were characterized by means of various techniques (BET, XRD, Raman, H 2 -TPR, CO 2 -TPD, O 2 -TPO, OSC and H 2 -chemisorption) and evaluated in carbon dioxide methanation. Zr incorporation into catalyst formulation reduced catalyst's basicity but favored its reducibility, nickel availability and oxygen storage capacity. These characteristics gave rise to an improved catalytic performance both in terms of activity and stability: temperature required to achieve 50% conversion was reduced in 20 °C and low temperature (250 °C) stability was improved in around 8%. Initial rates approach was employed to determine reaction rates and apparent activation energies for CO 2 methanation, which resulted in 113 and 121 kJ mol −1 for Ni/CeO 2 and Ni/Ce 0.85 Zr 0.15 O 2 , respectively. © 2018 Hydrogen Energy Publications LLC


Documento: Artículo
Título:Zr promotion effect in CO 2 methanation over ceria supported nickel catalysts
Autor:Iglesias, I.; Quindimil, A.; Mariño, F.; De-La-Torre, U.; González-Velasco, J.R.
Filiación:Laboratorio de Procesos Catalíticos, ITHES (UBA-CONICET), Pabellón de Industrias, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, 1428, Argentina
Department of Chemical Engineering, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Barrio Sarriena, S/n, Leioa, Bizkaia 48940, Spain
Palabras clave:Ceria; CO 2 methanation; Doped-ceria; Nickel; Zirconium; Activation energy; Alkalinity; Carbon dioxide; Cerium compounds; Cerium oxide; Greenhouse effect; Hydrogenation; Methanation; Nickel; Reaction rates; Renewable energy resources; Temperature; Zirconium; Apparent activation energy; Catalytic performance; Doped ceria; Oxygen storage capacity; Promotion effects; Reduced catalysts; Renewable energy source; Supported nickel catalysts; Catalyst supports
Página de inicio:1710
Página de fin:1719
Título revista:International Journal of Hydrogen Energy
Título revista abreviado:Int J Hydrogen Energy


  • Gotz, M., Lefebvre, J., Mors, F., McDaniel Koch, A., Graf, F., Bajohr, S., Renewable power-to-gas: a technological and economic review (2016) Renew Energy, 85, pp. 1371-1390
  • Bailera, M., Lisbona, P., Romeo, L.M., Espatolero, S., Power to Gas projects review: lab, pilot and demo plants for storing renewable energy and CO 2 (2017) Renew Sustain Energy Rev, 69, pp. 292-312
  • Ghaib, K., Ben-FaresF, Z., Power-to-Methane: a state-of-the-art review (2018) Renew Sustain Energy Rev, 81, pp. 433-446
  • Wang, W., Gong, J., Methanation of carbon dioxide: an overview (2011) Front Chem Sci Eng, 5 (1), pp. 2-10
  • Ghaib, K., Nitz, K., Ben-Fares, F.-Z., Chemical methanation of CO 2 : a review (2016) Chem Bio Eng Rev, 3-6, pp. 266-275
  • Stangeland, K., Kalai, D., Li, H., Yu, Z., CO 2 methanation: the effect of catalysts and reaction conditions (2017) Energy Procedia, 105, pp. 2022-2027
  • Sharma, S., Hu, Z., Zhang, P., McFarland, E.W., Metiu, H., CO 2 methanation on Ru-doped ceria (2011) J Catal, 278, pp. 297-309
  • Wang, F., Li, C., Zhang, X., Wei, M., Evans, D.G., Duan, X., Catalytic behavior of supported Ru nanoparticles on the {100}, {110}and {111} facet of CeO 2 (2015) J Catal, 329, pp. 177-186
  • Wang, F., He, S., Chen, H., Wang, B., Zheng, L., Wei, M., Active site dependent reaction mechanism over Ru/CeO 2 catalysttoward CO 2 methanation (2016) J Am Chem Soc, 138, pp. 6298-6305
  • Trovarelli, A., DeLeitenburg, C., Dolcetti, G., Lorca, J.L., CO 2 methanation under transient and steady-state conditions over Rh/CeO 2 and CeO 2 -promoted Rh/SiO 2 : the role of surface and bulk ceria (1995) J Catal, 151 (1), pp. 111-124
  • Le, T.A., Kim, M.S., Lee, S.H., Kim, T.W., Park, E.D., CO and CO 2 methanation over supported Ni catalysts (2017) Catal Today, 293-294, pp. 89-96
  • Tada, S., Shimizu, T., Kameyama, H., Haneda, T., Kikuchi, R., Ni/CeO 2 catalysts with high CO 2 methanation activity and high CH 4 selectivity at low temperatures (2012) IJHE, 37, pp. 5527-5531
  • Zhou, G., Liu, H., Cui, K., Jia, A., Hu, G., Jiao, Z., Role of surface Ni and Ce species of Ni/CeO 2 catalyst in CO 2 methanation (2016) Appl Surf Sci, 383, pp. 248-252
  • Konishcheva, M.V., Potemkin, D.I., Badmaev, S.D., Snytnikov, P.V., Paukshtis, E.A., Sobyanin, V.A., On the mechanism of CO and CO 2 methanation over Ni/CeO 2 Catalysts (2016) Top Catal, 59, pp. 1424-1430
  • Liu, H., Zou, X., Wang, X., Lu, X., Ding, W., Effect of CeO 2 addition on Ni/Al 2 O 3 catalysts for methanation of carbon dioxide with hydrogen (2012) J Nat Gas Chem, 21, pp. 703-707
  • Ashok, J., Ang, M.L., Kawi, S., Enhanced activity of CO 2 methanation over Ni/CeO 2 -ZrO 2 catalysts:Influence of preparation methods (2017) Catal Today, 281, pp. 304-311
  • Pan, Q., Peng, J., Sun, T., Gao, D., Wang, S., Wang, S., CO 2 methanation on Ni/Ce 0.5 Zr 0.5 O 2 catalysts for the production of synthetic natural gas (2014) Fuel Process Technol, 123, pp. 166-171
  • Ocampo, F., Louis, B., Roger, A.-C., Methanation of carbon dioxide over nickel-based Ce 0.72 Zr 0.28 O 2 mixed oxide catalysts prepared by sol–gel method (2009) Appl Catal Gen, 369, pp. 90-96
  • Jobbágy, M., Mariño, F., Schönbrod, B., Baronetti, G., Laborde, M.A., Synthesis of copper-promoted CeO 2 catalysts (2006) Chem Mater, 18, pp. 1945-1950
  • Yao, H.C., Yu Yao, Y.F., Ceria in automotive exhaust catalysts: I. Oxygen storage (1984) J Catal, 86, pp. 254-265
  • Hennings, U., Reimert, R., Stability of rhodium catalysts supported on gadolinium doped ceria under steam reforming conditions (2008) Appl Catal A Gen, 337, pp. 1-9
  • Tsoncheva, T., Ivanova, R., Henych, J., Dimitrov, M., Kormunda, M., Kovacheva, D., Effect of preparation procedure on the formation of nanostructured ceria–zirconia mixed oxide catalysts for ethyl acetate oxidation: homogeneous precipitation with urea vs template-assisted hydrothermal synthesis (2015) Appl Catal A Gen, 502, pp. 418-432
  • Tang, C., Li, J., Yao, X., Sun, J., Cao, Y., Zhang, L., Mesoporous NiO–CeO 2 catalysts for CO oxidation: nickel content effect and mechanism aspect (2015) Appl Catal A Gen, 494, pp. 77-86
  • Radlik, M., Adamowska-Teyssier, M., Krzton, A., Kozieł, K., Krajewski, W., Turek, W., Da Costa, P., Dry reforming of methane over Ni/Ce 0.62 Zr 0.38 O 2 catalysts: effect of Ni loading on the catalytic activity and on H 2 /CO production (2015) Compt Rendus Chem, 18, pp. 1242-1249
  • RossignolS, DescormeC, KappensteinC, Duprez, D., Synthesis; structure and catalytic properties of Zr–Ce–Pr–O mixed oxides (2001) J Mater Chem, 11, pp. 2587-2592
  • Pushkarev, V.V., Kovalchuk, V.I., d'Itri, J.L., Probing defect sites on the CeO 2 surface with dioxygen (2004) J Phys Chem B, 108, pp. 5341-5348
  • Spanier, J.E., Robinson, R.D., Zhang, F., Chan, S.-W., Herman, I.P., Size-dependent properties of CeO 2-y nanoparticles as studied by Raman scattering (2001) Phys Rev B, 64, p. 245407
  • Poggio-Fraccari, E., Irigoyen, B., Baronetti, G., Mariño, F., Ce-Pr mixed oxides as active supports for Water-gas Shift reaction: experimental and density functional theory characterization (2014) Appl Catal A Gen, 485, pp. 123-132
  • Weber, W.H., Bass, K.C., McBride, J.R., Raman study of CeO2. Second-order scattering, lattice dynamics, and particle-size effects (1993) Phys Rev B, 48, pp. 178-185
  • Iglesias, I., Baronetti, G., Mariño, F., Ceria and Ce 0.95 M 0.05 O 2 − δ mixed oxides (M = La, Pr, Zr): vacancies and reducibility study (2017) Solid State Ionics, 15, pp. 123-129
  • Maher, R.C., Shearing, P.R., Brightman, E., Brett, D.J.L., Brandon, N.P., Cohen, L.F., Reduction dynamics of doped ceria, nickel oxide, and cermet composites probed using in situ Raman spectroscopy (2016) Adv Sci, 3, p. 1500146
  • Chan, S.S., Wachs, I.E., In situ laser Raman spectroscopy of nickel oxide supported on ϒ-A12O3 (1987) J Catal, 103, pp. 224-227
  • Dharmaraj, N., Prabu, P., Nagarajan, S., Kim, C.H., Park, J.H., Kim, H.Y., Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor (2006) Mater Sci Eng B, 128, pp. 111-114
  • Roh, H.-S., Eum, I.-H., Jeong, D.-W., Low temperature steam reforming of methane over Ni–Ce(1-x)Zr(x)O2 catalysts under severe conditions (2012) Renew Energy, 42, p. 212
  • Laosiripojana, N., Assabumrungrat, S., Methane steam reforming over Ni/Ce–ZrO2 catalyst: influences of Ce–ZrO2 support on reactivity, resistance toward carbon formation and intrinsic kinetics (2005) Appl Cat A-Gen, 290, pp. 200-211
  • Duprez, D., Study of surface mobility by isotopic exchange: recent developments and perspectives (1997) Stud Surf Sci Catal, 112, pp. 13-28
  • Ran, R., Fan, J., Weng, D., Microstructure and oxygen storage capacity of Sr-modified Pt/CeO 2 –ZrO 2 catalysts (2012) Prog. Nat. Sci-Mater Int, 22 (1), pp. 7-14
  • Zhang, B., Li, D., Wang, X., Catalytic performance of La–Ce–O mixed oxide for combustion of methane (2010) Catal Today, 158, pp. 348-353
  • HolgadoJ, P., Alvarez, R., Munuera, G., Study of CeO 2 XPS spectra by factor analysis: reduction of CeO 2 (2000) Appl Surf Sci, 161, pp. 301-315
  • Giordano, F., Trovarelli, A., De Leitenburg, C., Giona, M., A model for the temperature-programmed reduction of low and high surface area ceria (2000) J Catal, 193, pp. 273-282
  • Kambolis, A., Matralis, H., Trovarelli, A., Papadopoulou, C., Ni/CeO 2 -ZrO 2 catalysts for the dry reforming of methane (2010) Appl Catal A Gen, 377, pp. 16-26
  • Takeguchi, T., Furukawa, S., Inoue, M., Hydrogen spillover from NiO to the large surface area CeO 2 –ZrO 2 solid solutions and activity of the NiO/CeO 2 –ZrO 2 catalysts for partial oxidation of methane (2001) J Catal, 202, pp. 14-24
  • Iglesias, I., Baronetti, G., Mariño, F., Ni/Ce0.95M0.05O2-δ(M = Zr; Pr; La) for methane steam reforming at mild conditions (2017) IJHE, 42-50, pp. 29735-29744
  • Westermann, A., Azambre, B., Bacariza, M.C., Graca, I., Ribeiro, M.F., Lopes, J.M., The promoting effect of Ce in the CO 2 methanation performances on NiUSY zeolite: a FTIR in Situ/Operando study (2017) Catal Today, 283, pp. 74-81
  • Jaworski, Z., Zakrzewska, B., Pianko-Oprych, P., On thermodynamic equilibrium of carbon deposition from gaseous C-H-O mixtures: updating for nanotubes (2017) Rev Chem Eng, 33 (3), pp. 217-235
  • Gao, J., Wang, Y., Ping, Y., Hu, D., Xu, G., Gu, F., A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas (2012) RSC Adv, 2, pp. 2358-2368
  • Bian, Z., Meng, C.Y., Yu, Y., Kawi, S., Morphology dependence of catalytic properties of Ni/CeO [2] for CO [2] methanation: a kinetic and mechanism study (2018) Catal Today, ,
  • Weatherbee, G.D., Bartholomew, C.H., Hydrogenation of CO 2 on group VIII metals: II. Kinetics and mechanism of CO 2 hydrogenation on nickel (1982) J Catal, 77, pp. 460-472
  • Van Herwijnen, T., Van Doesburg, H., De Jong, W.A., Kinetics of the methanation of CO and CO 2 on a nickel catalyst (1973) J Catal, 28, pp. 391-402
  • Miguel, C.V., Mendes, A., Madeira, L.M., Intrinsic kinetics of CO 2 methanation over an industrial nickel-based catalyst (2018) J CO 2 Util, 25, pp. 128-136
  • Wang, S., Lu, G.Q.M., CO 2 reforming of methane on Ni catalysts: effects of the support phase and preparation technique (1998) ApplCatal B Environ, 16, pp. 269-277
  • Gallezot, P., Leclercq, C., Barbier, J., Marecot, P., Location and structure of coke deposits on alumina-supported platinum catalysts by EELS associated with electron microscopy (1989) J Catal, 116, pp. 164-170
  • Gil-Calvo, M., Jiménez-González, C., De Rivas, B., Gutiérrez-Ortiz, J.I., López-Fonseca, R., Novel nickel aluminate-derived catalysts supported on ceria and ceria–zirconia for partial oxidation of methane (2017) Ind Eng Chem Res, 56 (21), pp. 6186-6197
  • Silva, O.C.V., Silveira, E.B., Rabelo-NetoR, C., BorgesL, E.P., Noronha, F.B., Hydrogen production through steam reforming of toluene over Ni supported on MgAl mixed oxides derived from hydrotalcite-like compounds (2018) Catal Lett, 148 (6), pp. 1622-1633


---------- APA ----------
Iglesias, I., Quindimil, A., Mariño, F., De-La-Torre, U. & González-Velasco, J.R. (2019) . Zr promotion effect in CO 2 methanation over ceria supported nickel catalysts. International Journal of Hydrogen Energy, 44(3), 1710-1719.
---------- CHICAGO ----------
Iglesias, I., Quindimil, A., Mariño, F., De-La-Torre, U., González-Velasco, J.R. "Zr promotion effect in CO 2 methanation over ceria supported nickel catalysts" . International Journal of Hydrogen Energy 44, no. 3 (2019) : 1710-1719.
---------- MLA ----------
Iglesias, I., Quindimil, A., Mariño, F., De-La-Torre, U., González-Velasco, J.R. "Zr promotion effect in CO 2 methanation over ceria supported nickel catalysts" . International Journal of Hydrogen Energy, vol. 44, no. 3, 2019, pp. 1710-1719.
---------- VANCOUVER ----------
Iglesias, I., Quindimil, A., Mariño, F., De-La-Torre, U., González-Velasco, J.R. Zr promotion effect in CO 2 methanation over ceria supported nickel catalysts. Int J Hydrogen Energy. 2019;44(3):1710-1719.