Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper we study the behavior as p→∞ of solutions up,q to −Δpu−Δqu=0 in a bounded smooth domain Ω with a Lipschitz Dirichlet boundary datum u=g on ∂Ω. We find that there is a uniform limit of a subsequence of solutions, that is, there is pj→∞ such that upj,q→u∞ uniformly in Ω¯ and we prove that this limit u∞ is a solution to a variational problem, that, when the Lipschitz constant of the boundary datum is less than or equal to one, is given by the minimization of the Lq-norm of the gradient with a pointwise constraint on the gradient. In addition we show that the limit is a viscosity solution to a limit PDE problem that involves the q-Laplacian and the ∞-Laplacian. © 2016 Elsevier Ltd

Registro:

Documento: Artículo
Título:The behavior of solutions to an elliptic equation involving a p-Laplacian and a q-Laplacian for large p
Autor:Bonheure, D.; Rossi, J.D.
Filiación:Département de Mathématique, Université libre de Bruxelles, CP 214, Boulevard du Triomphe, Bruxelles, Belgium
INRIA - Team MEPHYSTO, Belgium
Departamento de Matemática, FCEyN UBA, Ciudad Universitaria, Pab 1 (1428), Buenos Aires, Argentina
Palabras clave:p-Laplacian; Viscosity solutions; Nonlinear equations; Viscosity; Behavior of solutions; Dirichlet boundary; Elliptic equations; Lipschitz constant; P-Laplacian; Smooth domains; Variational problems; Viscosity solutions; Laplace transforms
Año:2017
Volumen:150
Página de inicio:104
Página de fin:113
DOI: http://dx.doi.org/10.1016/j.na.2016.11.001
ISSN:0362546X
CODEN:NOAND
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_0362546X_v150_n_p104_Bonheure

Referencias:

  • Aronsson, G., Extensions of functions satisfying Lipschitz conditions (1967) Ark. Mat., 6, pp. 551-561
  • Aronsson, G., Crandall, M.G., Juutinen, P., A tour of the theory of absolutely minimizing functions (2004) Bull. Amer. Math. Soc., 41, pp. 439-505
  • Belloni, M., Kawohl, B., The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p→∞ (2004) ESAIM Control Optim. Calc. Var., 10, pp. 28-52
  • Benci, V., D'Avenia, P., Fortunato, D., Pisani, L., Solitons in several space dimensions: Derrick's problem and infinitely many solutions (2000) Arch. Ration. Mech. Anal., 154 (4), pp. 297-324
  • Bhattacharya, T., DiBenedetto, E., Manfredi, J.J., Limits as p→∞ of Δpup=f and related extremal problems (1991) Rend. Semin. Mat. Univ. Politec. Torino, 1989, pp. 15-68
  • Caselles, V., Morel, J.M., Sbert, C., An axiomatic approach to image interpolation (1998) IEEE Trans. Image Process., 7, pp. 376-386
  • Charro, F., Peral, I., Limit branch of solutions as p→∞ for a family of sub-diffusive problems related to the p-Laplacian (2007) Comm. Partial Differential Equations, 32 (10-12), pp. 1965-1981
  • Cherfils, L., Iloyasov, Y., On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian (2005) Commun. Pure Appl. Anal., 4 (1), pp. 9-22
  • Crandall, M.G., Ishii, H., Lions, P.L., User's guide to viscosity solutions of second order partial differential equations (1992) Bull. Amer. Math. Soc., 27, pp. 1-67
  • Esposito, L., Kawohl, B., Nitsch, C., Trombetti, C., The Neumann eigenvalue problem for the ∞-Laplacian, , Preprint
  • Evans, L.C., Gangbo, W., Differential equations methods for the Monge–Kantorovich mass transfer problem (1999) Mem. Amer. Math. Soc., 137 (653)
  • Fragalà, I., Gazzola, F., Kawohl, B., Existence and nonexistence results for anisotropic quasilinear elliptic equations (2004) Ann. Inst. H. Poincaré Anal. Non Linéaire, 21, pp. 715-734
  • García-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D., The Neumann problem for the ∞-Laplacian and the Monge–Kantorovich mass transfer problem (2007) Nonlinear Anal., 66, pp. 349-366
  • Garcia-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D., The limit as p→∞ for the p-Laplacian with mixed boundary conditions and the mass transport problem through a given window (2009) Rend. Lincei Mat. Appl., 20 (2), pp. 111-126
  • Ishibashi, T., Koike, S., On fully nonlinear PDEs derived from variational problems of Lp norms (2001) SIAM J. Math. Anal., 33 (3), pp. 545-569
  • Juutinen, P., Lindqvist, P., On the higher eigenvalues for the ∞-eigenvalue problem (2005) Calc. Var. Partial Differential Equations, 23 (2), pp. 169-192
  • Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem (1999) Arch. Ration. Mech. Anal., 148, pp. 89-105
  • Juutinen, P., Lindqvist, P., Manfredi, J.J., On the equivalence of viscosity solutions and weak solutions for a quasilinear equation (2001) SIAM J. Math. Anal., 33 (3), pp. 699-717
  • López-Soriano, R., Navarro-Climent, J.C., Rossi, J.D., The infinity Laplacian with a transport term (2013) J. Math. Anal. Appl., 398, pp. 752-765
  • Papageorgiou, N.S., Winkert, P., Resonant (p,2)-equations with concave terms (2015) Appl. Anal., 94 (2), pp. 341-359
  • Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B., Tug-of-war and the infinity Laplacian (2009) J. Amer. Math. Soc., 22, pp. 167-210
  • Peres, Y., Sheffield, S., Tug-of-war with noise: a game theoretic view of the p-Laplacian (2008) Duke Math. J., 145, pp. 91-120
  • Pérez-Llanos, M., Rossi, J.D., An anisotropic infinity Laplacian obtained as the limit of the anisotropic (p,q)-Laplacian (2011) Commun. Contemp. Math., 13 (6), pp. 1-20
  • Rossi, J.D., Saez, M., Optimal regularity for the pseudo infinity Laplacian (2007) ESAIM Control Optim. Calc. Var., COCV, 13 (2), pp. 294-304
  • Rossi, J.D., Saintier, N., On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions (2016) Houston J. Math., 42 (2), pp. 613-635

Citas:

---------- APA ----------
Bonheure, D. & Rossi, J.D. (2017) . The behavior of solutions to an elliptic equation involving a p-Laplacian and a q-Laplacian for large p, 150, 104-113.
http://dx.doi.org/10.1016/j.na.2016.11.001
---------- CHICAGO ----------
Bonheure, D., Rossi, J.D. "The behavior of solutions to an elliptic equation involving a p-Laplacian and a q-Laplacian for large p" 150 (2017) : 104-113.
http://dx.doi.org/10.1016/j.na.2016.11.001
---------- MLA ----------
Bonheure, D., Rossi, J.D. "The behavior of solutions to an elliptic equation involving a p-Laplacian and a q-Laplacian for large p" , vol. 150, 2017, pp. 104-113.
http://dx.doi.org/10.1016/j.na.2016.11.001
---------- VANCOUVER ----------
Bonheure, D., Rossi, J.D. The behavior of solutions to an elliptic equation involving a p-Laplacian and a q-Laplacian for large p. 2017;150:104-113.
http://dx.doi.org/10.1016/j.na.2016.11.001