Artículo

Pereira, M.C.; Rossi, J.D.; Saintier, N."Fractional problems in thin domains" (2019) Nonlinear Analysis, Theory, Methods and Applications
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper we consider nonlocal fractional problems in thin domains. Given open bounded subsets U⊂R n and V⊂R m , we show that the solution u ε to Δ x s u ε (x,y)+Δ y t u ε (x,y)=f(x,ε −1 y)inU×εV with u ε (x,y)=0 if x⁄∈U and y∈εV, verifies that ũ ε (x,y)≔u ε (x,εy)→u 0 strongly in the natural fractional Sobolev space associated to this problem. We also identify the limit problem that is satisfied by u 0 and estimate the rate of convergence in the uniform norm. Here Δ x s u and Δ y t u are the fractional Laplacian in the 1st variable x (with a Dirichlet condition, u(x)=0 if x⁄∈U) and in the 2nd variable y (with a Neumann condition, integrating only inside V), respectively, that is, Δ x s u(x,y)=∫ R n [Formula presented]dw and Δ y t u(x,y)=∫ V [Formula presented]dz. © 2019 Elsevier Ltd

Registro:

Documento: Artículo
Título:Fractional problems in thin domains
Autor:Pereira, M.C.; Rossi, J.D.; Saintier, N.
Filiación:Dpto. de Matemática Aplicada, IME, Universidade de São Paulo, Rua do Matão, São Paulo - SP 1010, Brazil
Dpto. de Matemáticas, FCEyN, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Palabras clave:Dirichlet problem; Neumann problem; Nonlocal fractional equations; Thin domains; Boundary value problems; Dirichlet condition; Dirichlet problem; Fractional equation; Fractional Laplacian; Neumann problem; Open bounded subsets; Rate of convergence; Thin domains; Sobolev spaces
Año:2019
DOI: http://dx.doi.org/10.1016/j.na.2019.02.024
Handle:http://hdl.handle.net/20.500.12110/paper_0362546X_v_n_p_Pereira
Título revista:Nonlinear Analysis, Theory, Methods and Applications
Título revista abreviado:Nonlinear Anal Theory Methods Appl
ISSN:0362546X
CODEN:NOAND
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v_n_p_Pereira

Referencias:

  • Shuichi, J., Morita, Y., Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels (1991) Comm. Part. Diff. Eq., 17 (3), pp. 189-226
  • Hale, J.K., Raugel, G., Reaction–diffusion equations on thin domains (1992) J. Math. Pures et Appl., 9 (71), pp. 33-95
  • Prizzi, M., Rybakowski, K.P., Recent results on thin domain problems ii (2002) Top. Meth. Nonlinear Anal., 19, pp. 199-219
  • Ferreira, R., Mascarenhas, M.L., Piatnitski, A., Spectral analysis in thin tubes with axial heterogeneities (2015) Portugal. Math., 72, pp. 247-266
  • Pereira, M.C., Silva, R.P., Remarks on the p-Laplacian on thin domains (2015) Progr. Nonlinear Differential Equations Appl., pp. 389-403
  • Barros, S.R.M., Pereira, M.C., Semilinear elliptic equations in thin domains with reaction terms concentrating on boundary (2016) J. Math. Anal. Appl., 441 (1), pp. 375-392
  • Arrieta, J.M., Villanueva-Pesqueira, M., Thin domains with non-smooth periodic oscillatory boundaries (2017) J. Math. Anal. Appl., 446, pp. 130-164
  • Saintier, N., Asymptotics of best Sobolev constants on thin manifolds (2009) J. Differential Equations, 246, pp. 2876-2890
  • Aris, R., On the dispersion of a solute in a fluid flowing through a tube (1956) Proc. Roy. Soc. London Sect. A, 235, pp. 67-77
  • Iftimie, D., The 3D Navier–Stokes equations seen as a perturbation of the 2D Navier- Stokes equations (1999) Bull. Soc. Math. France, 127, pp. 473-518
  • Hong, L.T., Sell, G.R., Navier–stokes equations with navier boundary conditions for an oceanic model (2010) J. Dynam. Differential Equations, 22 (3), pp. 563-616
  • Bella, P., Feireisl, E., Novotny, A., Dimension reduction for compressible viscous fluids (2014) Acta Appl. Math., 134, pp. 111-121
  • Fabricius, J., Koroleva, Y.O., Tsandzana, A., Wall, P., Asymptotic behavior of Stokes flow in a thin domain with a moving rough boundary (2014) Proc. R. Soc. A, 470
  • Benes, M., Pazanin, I., Suárez-Grau, F.J., Heat flow through a thin cooled pipe filled with a micropolar fluid (2015) J. Theoret. Appl. Mech., 53 (3), pp. 569-579
  • Liao, X., On the strong solutions of the inhomogeneous incompressible Navier–Stokes equations in a thin domain (2016) Differential Integral Equations, 29, pp. 167-182
  • Pereira, M.C., Rossi, J.D., Nonlocal problems in thin domains. Preprint; DiNezza, E., Palatucci, G., Valdinoci, E., Hitchhiker's guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136, pp. 521-573
  • Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo, J., (2010) Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165. , AMS
  • Cortazar, C., Elgueta, M., Rossi, J.D., Wolanski, N., How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems (2007) Arch. Ration. Mech. Anal., 187, pp. 137-156
  • Cortazar, C., Elgueta, M., Rossi, J.D., Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions (2009) Israel J. Math., 170 (1), pp. 53-60
  • Pereira, M.C., Silva, R.P., Correctors for the Neumann problem in thin domains with locally periodic oscillatory structure. Quart (2015) Appl. Math., 73, pp. 537-552
  • Raugel, G., (1995) Dynamics of Partial Differential Equations on Thin Domains, Lecture Notes in Mathematics, 1609. , Springer-Verlag
  • Ladyzhenskaya, O.A., Ural'tseva, N.N., Linear and quasilinear elliptic equations. Vol. 46 (1968), Academic Press; MolicaBisci, G., Radulescu, V., Servadei, R., Variational methods for nonlocal fractional problems. With a foreword by Jean Mawhin (2016) Encyclopedia of Mathematics and its Applications, Vol. 162, p. xvi+383. , Cambridge University Press Cambridge

Citas:

---------- APA ----------
Pereira, M.C., Rossi, J.D. & Saintier, N. (2019) . Fractional problems in thin domains. Nonlinear Analysis, Theory, Methods and Applications.
http://dx.doi.org/10.1016/j.na.2019.02.024
---------- CHICAGO ----------
Pereira, M.C., Rossi, J.D., Saintier, N. "Fractional problems in thin domains" . Nonlinear Analysis, Theory, Methods and Applications (2019).
http://dx.doi.org/10.1016/j.na.2019.02.024
---------- MLA ----------
Pereira, M.C., Rossi, J.D., Saintier, N. "Fractional problems in thin domains" . Nonlinear Analysis, Theory, Methods and Applications, 2019.
http://dx.doi.org/10.1016/j.na.2019.02.024
---------- VANCOUVER ----------
Pereira, M.C., Rossi, J.D., Saintier, N. Fractional problems in thin domains. Nonlinear Anal Theory Methods Appl. 2019.
http://dx.doi.org/10.1016/j.na.2019.02.024