Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In-situ catalytic pyrolysis of peanut (Arachis hypogaea) shells was investigated employing modified clinoptilolite. Likewise, conventional pyrolysis of the shells was explored to quantify the deoxygenation degree of bio-oil. Two solid catalysts obtained from natural clinoptilolite were used: one which retained most of the native cations and another one subjected to ion exchange treatment to develop Brønsted acid sites. These catalysts were characterized using different techniques, such as scanning electron microscopy with X-ray microanalysis, Fourier transform infrared spectroscopy by pyridine adsorption, and nitrogen sorptometry. Assays in a bench scale installation based on a fixed bed reactor were conducted at 500 °C and the yields of the three kinds of pyrolysis products (bio-oil, bio-char and gases) were determined. Likewise, the composition and other physical properties of the bio-oil and gases were investigated. Both catalysts led to reduce the oxygen content of the bio-oil, improving its high heating value. On the other hand, catalytic pyrolysis promoted a slight reduction in bio-oil production at expenses of an increase in gases generation. The catalyst subjected to ion exchange performed better than the native form as less water was generated in the catalytic cracking. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:In-situ catalytic pyrolysis of peanut shells using modified natural zeolite
Autor:Gurevich Messina, L.I.; Bonelli, P.R.; Cukierman, A.L.
Filiación:Programa de Investigación y Desarrollo de Fuentes Alternativas de Materias Primas y Energía − PINMATE, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2620, Ciudad Universitaria, Buenos Aires, C1428BGA, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, C1425FQB, Argentina
Cátedra de Tecnología Farmacéutica II, Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
Palabras clave:Bio-oil quality improvement; Catalytic pyrolysis; Clinoptilolite; Peanut shells; Biofuels; Catalysts; Chemical reactors; Fourier transform infrared spectroscopy; Ion exchange; Oilseeds; Pyrolysis; Scanning electron microscopy; Shells (structures); Zeolites; Bio oil; Catalytic pyrolysis; Clinoptilolites; Ion-exchange treatment; Modified clinoptilolite; Natural clinoptilolite; Peanut shells; Pyridine adsorption; Catalytic cracking
Año:2017
Volumen:159
Página de inicio:160
Página de fin:167
DOI: http://dx.doi.org/10.1016/j.fuproc.2017.01.032
Título revista:Fuel Processing Technology
Título revista abreviado:Fuel Process Technol
ISSN:03783820
CODEN:FPTED
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_03783820_v159_n_p160_GurevichMessina

Referencias:

  • Arromdee, P., Kuprianov, V.I., Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material (2012) Appl. Energy, 97, pp. 470-482
  • Liu, X., Bi, X.T., Removal of inorganic constituents from pine barks and switchgrass (2011) Fuel Process. Technol., 92, pp. 1273-1279
  • Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., Mekhilef, S., A review on biomass as a fuel for boilers (2011) Renew. Sust. Energ. Rev., 15, pp. 2262-2289
  • Menon, V., Rao, M., Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept (2012) Prog. Energy Combust. Sci., 38, pp. 522-550
  • Demirbas, A., Political, economic and environmental impacts of biofuels: a review (2009) Appl. Energy, 86, pp. S108-S117
  • Cukierman, A.L., Nunell, G.V., Fernandez, M.E., De Celis, J., Kim, M.R., Gurevich Messina, L., Bonelli, P.R., Thermochemical processing of wood from invasive arboreal species for sustainable bioenergy generation and activated carbons production (2012) Invasive Species: Threats, Ecological Impact and Control Methods, pp. 1-45. , J.J. Blanco A.T. Fernandes Nova Publishers Inc. New York
  • Bridgwater, A.V., Review of fast pyrolysis of biomass and product upgrading (2012) Biomass Bioenergy, 38, pp. 68-94
  • Zhang, L., Xu, C., Champagne, P., Overview of recent advances in thermo-chemical conversion of biomass (2010) Energy Convers. Manag., 51, pp. 969-982
  • Jacobson, K., Maheria, K.C., Kumar Dalai, A., Bio-oil valorization: a review (2013) Renew. Sust. Energ. Rev., 23, pp. 91-106
  • Chiaramonti, D., Oasmaa, A., Solantausta, Y., Power generation using fast pyrolysis liquids from biomass (2007) Renew. Sust. Energ. Rev., 11, pp. 1056-1086
  • Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., Chiaramonti, D., Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass (2014) Appl. Energy, 116, pp. 178-190
  • Vispute, T.P., Zhang, H., Sanna, A., Xiao, R., Huber, G.W., Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils (2010) Science, 330, pp. 1222-1227
  • Mortensen, P.M., Grunwaldt, J.-D., Jensen, P.A., Knudsen, K.G., Jensen, A.D., A review of catalytic upgrading of bio-oil to engine fuels (2011) Appl. Catal. A Gen., 407, pp. 1-19
  • Mihalcik, D.J., Mullen, C.A., Boateng, A.A., Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components (2011) J. Anal. Appl. Pyrolysis, 92, pp. 224-232
  • Aho, A., DeMartini, N., Pranovich, A., Krogell, J., Kumar, N., Eränen, K., Holmbom, B., Murzin, D.Y., Pyrolysis of pine and gasification of pine chars–influence of organically bound metals (2013) Bioresour. Technol., 128, pp. 22-29
  • Wang, K., Johnston, P.A., Brown, R.C., Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system (2015) Bioresour. Technol., 173, pp. 124-131
  • Adjaye, J.D., Katikaneni, S.P.R., Bakhshi, N.N., Catalytic conversion of a biofuel to hydrocarbons: effect of mixtures of HZSM-5 and silica-alumina catalysts on product distribution (1996) Fuel Process. Technol., 48, pp. 115-143
  • Perego, C., Bagatin, R., Tagliabue, M., Vignola, R., Zeolites and related mesoporous materials for multi-talented environmental solutions (2013) Microporous Mesoporous Mater., 166, pp. 37-49
  • Pütün, E., Uzun, B.B., Pütün, A.E., Rapid pyrolysis of olive residue. 2. Effect of catalytic upgrading of pyrolysis vapors in a two-stage fixed-bed reactor (2009) Energy Fuels, pp. 2248-2258
  • Rajić, N., Logar, N.Z., Rečnik, A., El-Roz, M., Thibault-Starzyk, F., Sprenger, P., Hannevold, L., Stöcker, M., Hardwood lignin pyrolysis in the presence of nano-oxide particles embedded onto natural clinoptilolite (2013) Microporous Mesoporous Mater., 176, pp. 162-167
  • Milovanović, J., Stensrød, R., Myhrvold, E., Tschentscher, R., Stöcker, M., Lazarevic, S., Rajić, N., Modification of natural clinoptilolite and ZSM-5 with different oxides and studying of the obtained products in lignin pyrolysis (2015) J. Serbian Chem. Soc., 80, pp. 717-729
  • Aho, A., Kumar, N., Eränen, K., Salmi, T., Hupa, M., Murzin, D.Y., Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure (2008) Fuel, 87, pp. 2493-2501
  • Botto, I.L., Canafoglia, M.E., Lick, I.D., Cabello, C.I., Schalamuk, I.B., Minelli, G., Ferraris, G., Environmental application of natural microporous aluminosilicates: NOx reduction by propane over modified clinoptilolite zeolite (2004) J. Arg. Chem. Soc., 92, pp. 139-153
  • Emeis, C.A., Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts (1993) J. Catal., 141, pp. 347-354
  • Fernandez, M.E., Nunell, G.V., Bonelli, P.R., Cukierman, A.L., Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes (2014) Ind. Crop. Prod., 62, pp. 437-445
  • Rover, M.R., Brown, R.C., Quantification of total phenols in bio-oil using the Folin–Ciocalteu method (2013) J. Anal. Appl. Pyrolysis, 104, pp. 366-371
  • Rover, M.R., Johnston, P.A., Lamsal, B.P., Brown, R.C., Total water-soluble sugars quantification in bio-oil using the phenol–sulfuric acid assay (2013) J. Anal. Appl. Pyrolysis, 104, pp. 194-201
  • Yaşyerli, S., Ar, I., Doğu, G., Doğu, T., Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber (2002) Chem. Eng. Process., 41, pp. 785-792
  • Tao, Y.F., Qiu, Y., Fang, S.Y., Liu, Z.Y., Wang, Y., Zhu, J.H., Trapping the lead ion in multi-components aqueous solution by natural clinoptilolite (2010) J. Hazard. Mater., 180, pp. 282-288
  • Ünaldı, T., Mızrak, İ., Kadir, S., Physicochemical characterisation of natural K-clinoptilolite and heavy-metal forms from Gördes (Manisa, western Turkey) (2013) J. Mol. Struct., 1054-1055, pp. 349-358
  • Stöcker, M., Gas phase catalysis by zeolites (2005) Microporous Mesoporous Mater., 82, pp. 257-292
  • González, J.D., Kim, M.R., Buonomo, E.L., Bonelli, P.R., Cukierman, A.L., Pyrolysis of biomass from sustainable energy plantations: effect of mineral matter reduction on kinetics and charcoal pore structure (2008) Energy Sources, Part A: Recover, Util. Environ. Effects, 30, pp. 809-817
  • Corma, A., Huber, G., Sauvanaud, L., Oconnor, P., Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst (2007) J. Catal., 247, pp. 307-327
  • Ma, Z., Troussard, E., Van Bokhoven, J.A., Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis (2012) Appl. Catal. A Gen., 423-424, pp. 130-136
  • Patwardhan, P., Satrio, J.A., Brown, R.C., Shanks, B.H., Product distribution from fast pyrolysis of glucose-based carbohydrates (2009) J. Anal. Appl. Pyrolysis, 86, pp. 323-330
  • Ohra-aho, T., Linnekoski, J., Catalytic pyrolysis of lignin by using analytical pyrolysis-GC–MS (2015) J. Anal. Appl. Pyrolysis, 113, pp. 186-192
  • Collard, F.-X., Blin, J., A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin (2014) Renew. Sust. Energ. Rev., 38, pp. 594-608

Citas:

---------- APA ----------
Gurevich Messina, L.I., Bonelli, P.R. & Cukierman, A.L. (2017) . In-situ catalytic pyrolysis of peanut shells using modified natural zeolite. Fuel Processing Technology, 159, 160-167.
http://dx.doi.org/10.1016/j.fuproc.2017.01.032
---------- CHICAGO ----------
Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L. "In-situ catalytic pyrolysis of peanut shells using modified natural zeolite" . Fuel Processing Technology 159 (2017) : 160-167.
http://dx.doi.org/10.1016/j.fuproc.2017.01.032
---------- MLA ----------
Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L. "In-situ catalytic pyrolysis of peanut shells using modified natural zeolite" . Fuel Processing Technology, vol. 159, 2017, pp. 160-167.
http://dx.doi.org/10.1016/j.fuproc.2017.01.032
---------- VANCOUVER ----------
Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L. In-situ catalytic pyrolysis of peanut shells using modified natural zeolite. Fuel Process Technol. 2017;159:160-167.
http://dx.doi.org/10.1016/j.fuproc.2017.01.032