El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


In this work we analyze several aspects related with segregation patterns appearing in the Schelling–Voter model in which an unhappy agent can change her location or her state in order to live in a neighborhood where she is happy. Briefly, agents may be in two possible states, each one represents an individually-chosen feature, such as the language she speaks or the opinion she supports; and an individual is happy in a neighborhood if she has, at least, some proportion of agents of her own type, defined in terms of a fixed parameter T. We study the model in a regular two dimensional lattice. The parameters of the model are ρ, the density of empty sites, and p, the probability of changing locations. The stationary states reached in a system of N agents as a function of the model parameters entail the extinction of one of the states, the coexistence of both, segregated patterns with conglomerated clusters of agents of the same state, and a diluted region. Using indicators as the energy and perimeter of the populations of agents in the same state, the inner radius of their locations (i.e., the side of the maximum square which could fit with empty spaces or agents of only one type), and the Shannon Information of the empty sites, we measure the segregation phenomena. We have found that there is a region within the coexistence phase where both populations take advantage of space in an equitable way, which is sustained by the role of the empty sites. © 2017


Documento: Artículo
Título:Characterizing segregation in the Schelling–Voter model
Autor:Caridi, I.; Pinasco, J.P.; Saintier, N.; Schiaffino, P.
Filiación:Instituto de Cálculo UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Int. Guiraldes 2160, Buenos Aires, Argentina
Departamento de Matemática and IMAS UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab I, Int. Guiraldes 2160, Buenos Aires, Argentina
Departamento de Economía, Universidad Torcuato Di Tella, Av. Figueroa Alcorta 7350, Buenos Aires, Argentina
Palabras clave:Crowds; Schelling model; Segregation; Voter model; Physics; Segregation (metallography); Crowds; Schelling; Segregated patterns; Segregation patterns; Segregation phenomena; Shannon information; Two-dimensional lattices; Voter models; Location
Página de inicio:125
Página de fin:142


  •, (accessed 103116); Schelling, T.C., Models of segregation (1969) Am. Econ. Rev., 59, pp. 488-493
  • Schelling, T.C., Dynamic models of segregation (1971) J. Math. Sociol., 1, pp. 143-186
  • Schelling, T.C., On the ecology of micromotives (1974) The Corporate Society, pp. 19-64. , Macmillan Education UK
  • Schelling, T.C., A process of residential segregation: neighborhood tipping (1972) Racial Discrimination in Economic Life, , Pascal A.H. Lexington Books Lexington, MA
  • Schelling, T.C., (1978) Micromotives and Macrobehavior, , WW Norton & Co. New York
  • Arrow, K.J., What has economics to say about racial discrimination? (1998) J. Econ. Perspect., 12, pp. 91-100
  • Clark, W.A.V., Residential preferences and neighborhood racial segregation: a test of the schelling segregation model (1991) Demography, 28, pp. 1-19
  • Ioannides, Y.M., Seslen, T.N., Neighborhood wealth distributions (2002) Econom. Lett., 76, pp. 357-367
  • Aydinonat, N.E., (2008) The Invisible Hand in Economics, How Economists Explain Unintended Social Consequences, , Routledge London, New York
  • Gauvin, L., Vannimenus, J., Nadal, J.P., Phase diagram of a schelling segregation model (2009) Eur. Phys. J. B, 70, pp. 293-304
  • Gauvin, L., Nadal, J.-P., Vannimenus, J., Schelling segregation in an open city: a kinetically constrained Blume–Emery–Griffiths spin-1 system (2010) Phys. Rev. E, 81, p. 066120
  • Albano, E.V., Interfacial roughening, segregation and dynamic behavior in a generalized Schelling model (2012) J. Stat. Mech. Theory Exp., 2012, p. P03013
  • Vinkovic, D., Kirman, A., A physical analogue of the Schelling model (2006) Proc. Natl. Acad. Sci., 103, pp. 19261-19265
  • Zhang, J., A dynamic model of residential segregation (2004) J. Math. Sociol., 28, pp. 147-170
  • Dall'Asta, L., Castellano, C., Marsili, M., Statistical physics of the Schelling model of segregation (2008) J. Stat. Mech. Theory Exp., 2008, p. L07002
  • Shin, J.K., Fossett, M., Residential segregation by hill-climbing agents on the potential landscape (2008) Adv. Complex Syst., 11, pp. 875-899
  • Brandt, C., Immorlica, N., Kamath, G., Kleinberg, R., An analysis of one-dimensional schelling segregation (2012) Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 789-804. , ACM
  • Hawick, K.A., (2013), Multiple species phase transitions in agent-based simulations of the schelling segregation model,. Preprint; Caridi, I., Nemiña, F., Pinasco, J.P., Schiaffino, P., Schelling–Voter model: an application to language competition (2013) Chaos Solitons Fractals, 56, pp. 216-221
  • Holley, R.A., Liggett, T.M., Ergodic theorems for weakly interacting infinite systems and the voter model (1975) Ann. Probab., 3, pp. 643-663
  • Castellano, C., Santo, F., Loreto, V., Statistical physics of dynamics (2009) Rev. Modern Phys., 81, pp. 591-646
  • Stauffer, D., Aharony, A., (1994) Introduction To Percolation Theory, , second ed. CRC Press
  • Soille, P., (2004) Morphological Image Analysis: Principles and Applications, , Springer-Verlag Berlin, Heidelberg
  • Iceland, J., Weinberg, D.H., Steinmetz, E., Racial and ethnic residential segregation in the United States: 1980–2000 (2002) U. S. Census 2000 Special Reports, , Bureau of Census
  • Gauvin, L., Vignes, A., Nadal, J.-P., Modeling urban housing market dynamics: can the socio-spatial segregation preserve some social diversity? (2013) J. Econom. Dynam. Control, 37, pp. 1300-1321
  • Pollicott, M., Weiss, H., The dynamics of schelling-type segregation models and a nonlinear graph laplacian variational problem (2001) Adv. in Appl. Math., 27, pp. 17-40
  • Perc, M., Szolnoki, A., Coevolutionary games — a mini review (2010) BioSystems, 99, pp. 109-125
  • Gil, S., Zanette, D.H., Coevolution of agents and networks: Opinion spreading and community disconnection (2006) Phys. Lett. A, 356, pp. 89-94
  • Zanette, D.H., Gil, S., Opinion spreading and agent segregation on evolving networks (2006) Physica D, 224, pp. 156-165
  • Vázquez, F., Eguíluz, V.M., San Miguel, M., Generic absorbing transition in coevolution dynamics (2008) Phys. Rev. Lett., 100, p. 108702
  • Durrett, R., Gleeson, J.P., Lloyd, A.L., Mucha, P.J., Shi, F., Sivakoff, D., Socolar, J.E.S., Varghese, C., Graph fission in an evolving voter model (2012) Proc. Natl. Acad. Sci., 109, pp. 3682-3687
  • Basu, R., Sly, A., (2015), Evolving voter model on dense random graphs,. Preprint arXiv:1501.03134; Marceau, V., Noël, P.A., Hébert-Dufresne, L., Allard, A., Dubé, L.J., Adaptive networks: Coevolution of disease and topology (2010) Phys. Rev. E, 82, p. 036116
  • Zanette, D.H., Risau-Gusmán, S., Infection spreading in a population with evolving contacts (2008) J. Biol. Phys., 34, pp. 135-148
  • Szolnoki, A., Perc, M., Danku, Z., Making new connections towards cooperation in the prisoner's dilemma game (2008) Europhys. Lett., 84, p. 50007
  • Hazan, A., Randon-Furling, J., A Schelling model with switching agents: decreasing segregation via random allocation and social mobility (2013) Eur. Phys. J. B, 86, p. 421
  • Szolnoki, A., Wang, Z., Perc, M., Wisdom of groups promotes cooperation in evolutionary social dilemmas (2012) Sci. Rep., 2. , Article 576
  • Abrams, D.M., Strogatz, S.H., Linguistics: modelling the dynamics of language death (2003) Nature, 424, p. 900
  • Pancs, R., Vriend, N.J., Schelling's spatial proximity model of segregation revisited (2007) J. Publ. Econ., 91, pp. 1-24
  • Bruch, E.E., Mare, R.D., Neighborhood choice and neighborhood change 1 (2006) Am. J. Sociol., 112, pp. 667-709
  • Axelrod, R., The dissemination of culture — a model with local convergence and global polarization (1997) J. Confl. Resolut., 41, pp. 203-226


---------- APA ----------
Caridi, I., Pinasco, J.P., Saintier, N. & Schiaffino, P. (2017) . Characterizing segregation in the Schelling–Voter model, 487, 125-142.
---------- CHICAGO ----------
Caridi, I., Pinasco, J.P., Saintier, N., Schiaffino, P. "Characterizing segregation in the Schelling–Voter model" 487 (2017) : 125-142.
---------- MLA ----------
Caridi, I., Pinasco, J.P., Saintier, N., Schiaffino, P. "Characterizing segregation in the Schelling–Voter model" , vol. 487, 2017, pp. 125-142.
---------- VANCOUVER ----------
Caridi, I., Pinasco, J.P., Saintier, N., Schiaffino, P. Characterizing segregation in the Schelling–Voter model. 2017;487:125-142.