Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background: The use of microorganisms for the synthesis of nanoparticles (NPs) is relatively new in basic research and technology areas. Purpose: This work was conducted to optimized the biosynthesis of iron NPs intra- and extracellular by Escherichia coli or Pseudomonas aeruginosa and to evaluate their anticoagulant activity. Study Design/Methods: The structures and properties of the iron NPs were investigated by Ultraviolet–visible (UV-vis) spectroscopy, Zeta potential, Dynamic light scattering (DLS), Field emission scanning electron microscope (FESEM)/ Energy dispersive X-ray (EDX) and transmission electron microscopy (TEM). Anticoagulant activity was determined by conducting trials of Thrombin Time (TT), Activated Partial Prothrombin Time (APTT) and Prothrombin Time (PT). Results: UV-vis spectrum of the aqueous medium containing iron NPs showed a peak at 275 nm. The forming of iron NPs was confirmed by FESEM/ EDX, and TEM. The morphology was spherical shapes mostly with low polydispersity and the average particle diameter was 23 ± 1 nm. Iron NPs showed anticoagulant activity by the activation of extrinsic pathway. Conclusion: The eco-friendly process of biosynthesis of iron NPs employing prokaryotic microorganisms presents a good anticoagulant activity. This could be explored as promising candidates for a variety of biomedical and pharmaceutical applications. © 2016, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Intra- and Extracellular Biosynthesis and Characterization of Iron Nanoparticles from Prokaryotic Microorganisms with Anticoagulant Activity
Autor:Crespo, K.A.; Baronetti, J.L.; Quinteros, M.A.; Páez, P.L.; Paraje, M.G.
Filiación:Instituto Multidisciplinario de Biología Vegetal (IMBIV) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Cátedra de Microbiología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 299, Córdoba, Argentina
Unidad de Tecnología Farmacéutica (UNITEFA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
Palabras clave:anticoagulant activity; Escherichia coli; iron nanoparticles; microbial biosynthesis; Pseudomonas aeruginosa
Año:2017
Volumen:34
Número:3
Página de inicio:591
Página de fin:598
DOI: http://dx.doi.org/10.1007/s11095-016-2084-0
Título revista:Pharmaceutical Research
Título revista abreviado:Pharm. Res.
ISSN:07248741
CODEN:PHREE
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_07248741_v34_n3_p591_Crespo

Referencias:

  • Larrañeta, E., McCrudden, M.T., Courtenay, A.J., Donnelly, R.F., Microneedles: a new frontier in nanomedicine delivery (2016) Pharm Res, 33 (5), pp. 1055-1073. , PID: 26908048
  • Liu, J., Qiao, S.Z., Hu, Q.H., Lu, G.Q., Magnetic nanocomposites with mesoporous structures: synthesis and applications (2011) Small, 7 (4), pp. 425-443. , COI: 1:CAS:528:DC%2BC3MXisFegs7g%3D, PID: 21246712
  • Luechinger, N.A., Grass, R.N., Athanassiou, E.K., Stark, W.J., Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals (2010) Chem Mater, 22 (1), pp. 155-160. , COI: 1:CAS:528:DC%2BD1MXhsFaju7zF
  • Hulkoti, N.I., Taranath, T.C., Biosynthesis of nanoparticles using microbes a review (2014) Colloids Surf B, 121, pp. 474-483. , COI: 1:CAS:528:DC%2BC2cXhtFWnsLzF
  • Teja, A.S., Koh, P., Synthesis, properties, and applications of magnetic iron oxide nanoparticles (2009) Prog Crystal Growth Char Mat, 55 (1), pp. 22-45. , COI: 1:CAS:528:DC%2BD1MXktVOkt7g%3D
  • Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A.R., Ali, J.S., Synthesis, characterization, applications, and challenges of iron oxide nanoparticles (2016) Nanotechnol Sci Appl, 9, pp. 49-67. , PID: 27578966
  • Akbarzadeh, A., Samiei, M., Davaran, S., Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine (2012) Nanoscale Res Lett, 7 (1), p. 144. , PID: 22348683
  • Hasany, S., Ahmed, I., Rajan, J., Rehman, A., Systematic review of the preparation techniques of iron oxide magnetic nanoparticles (2012) Nanosci Nanotechnol, 2 (6), pp. 148-158
  • Narayanan, K.B., Sakthivel, N., Biological synthesis of metal nanoparticles by microbes (2010) Adv Colloid Interface Sci, 156 (1-2), pp. 1-13. , COI: 1:CAS:528:DC%2BC3cXkt1Orsbg%3D, PID: 20181326
  • Zhang, X., Yan, S., Tyagi, R.D., Surampalli, R.Y., Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates (2011) Chemosphere, 82, pp. 489-494. , COI: 1:CAS:528:DC%2BC3cXhs1agt7vF, PID: 21055786
  • Naha, P.C., Lau, K.C., Hajfathalian, M., Mian, S., Chhour, P., Uppuluri, L., Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography (2016) Nanoscale, 8 (28), pp. 13740-13754. , COI: 1:CAS:528:DC%2BC28XhtVOnt7vP, PID: 27412458
  • Gupta, A.K., Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications (2005) Biomaterials, 26, pp. 3995-4021. , COI: 1:CAS:528:DC%2BD2MXisFWr, PID: 15626447
  • Angel Villegas, N., Baronetti, J., Albesa, I., Etcheverría, A., Becerra, M.C., Padola, N.L., Effect of antibiotics on cellular stress generated in Shiga toxin-producing Escherichia coli O157:H7 and non-O157 biofilms (2015) Toxicol In Vitro, 29, pp. 1692-1700. , COI: 1:CAS:528:DC%2BC2MXhtV2hsrbM, PID: 26130220
  • Zhang, J., Shin, M.C., Yang, V.C., Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model (2014) Pharm Res, 31 (3), pp. 579-592. , PID: 24065589
  • Quinteros, M.A., Aiassa Martínez, I.M., Dalmasso, P.R., Páez, P.L., Silver nanoparticles: biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents (2016) Int J Biomater, 2016, p. 5971047. , PID: 27340405
  • Quinteros, M.A., Cano Aristizábal, V., Dalmasso, P.R., Paraje, M.G., Páez, P.L., Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity (2016) Toxicol in Vitro, 36, pp. 216-223. , COI: 1:CAS:528:DC%2BC28XhtlykurjP, PID: 27530963
  • Mohamed, Y.M., Azzam, A.M., Amin, B.H., Safwat, N.A., Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity (2015) Afr J Biotechnol, 14 (14), pp. 1234-1241. , COI: 1:CAS:528:DC%2BC28Xps1ers7g%3D
  • (2000) Rosario, Argentina, p. 2000
  • Kern, A., Várnai, K., Vásárhelyi, B., Thrombin generation assays and their clinical application (2014) Orv Hetil, 155 (22), pp. 851-857. , PID: 24860049
  • Young, D.S., (2001) Effects of drugs on clinical laboratory tests, , AACC Press, Washington DC
  • Martínez-Gutierrez, F., Thi, E.P., Silverman, J.M., de Oliveira, C.C., Svensson, S.L., Vanden Hoek, A., Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles (2012) Nanomedicine, 8, pp. 328-336. , PID: 21718674
  • Lassenberger A, Bixner O, Gruenewald T, Lichtenegger H, Zirbs R, Reimhult E. Evaluation of high-yield purification methods on monodisperse PEG-grafted iron oxide nanoparticles; Bharde, A., Wani, A., Shouche, Y., Joy, P.A., Prasad, B.L.V., Sastry, M., Bacterial synthesis of nanocrystalline magnetite (2005) J Am Chem Soc, 127, pp. 9326-9327. , COI: 1:CAS:528:DC%2BD2MXkvVGlu7g%3D, PID: 15984833
  • Lee, J.H., Roh, Y., Hur, H.G., Microbial production and characterization of superparamagnetic magnetite nanoparticles by Shewanella sp. HN-41 (2008) J Microbiol Biotechnol, 18, pp. 1572-1577. , COI: 1:CAS:528:DC%2BD1MXotFSkt7c%3D, PID: 18852514
  • Roh, Y., Jang, H.D., Suh, Y., Microbial synthesis of magnetite and Mn substituted magnetite nanoparticles: influence of bacteria and incubation temperature (2007) J Nanosci Nanotechnol, 7, pp. 3938-3943. , COI: 1:CAS:528:DC%2BD2sXhtlSht77P, PID: 18047092
  • Quester, K., Avalos-Borja, M., Castro-Longoria, E., Biosynthesis and microscopic study of metallic nanoparticles (2013) Micron, 54-55, pp. 1-27. , PID: 23928107
  • Gonzalo, J., Serna, R., Sol, J., Babonneau, D., Afonso, C., Morphological and interaction effects on the surface plasmon resonance of metal Nanoparticles (2003) J Phys Condens Matter, 15 (42), pp. 3001-3002
  • Srivastava, S.K., Constanti, M., Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1 (2012) J Nanopart Res, 14, pp. 1-10
  • Bharde, A., Rautray, D., Sarkar, I., Seikh, M., Sanyal, M., Ahmad, A., Fungus mediated synthesis of magnetite nanoparticles (2006) Small, 2, pp. 135-141. , COI: 1:CAS:528:DC%2BD2MXhtlWqsrjF, PID: 17193569
  • Lin, S.Y., Wu, S.H., Chen, C.H., A simple strategy for prompt visual sensing by gold nanoparticles: general applications of interparticle hydrogen bonds (2006) Angew Chem Int Ed, 45 (30), pp. 4948-4951. , COI: 1:CAS:528:DC%2BD28XnvVeis7c%3D
  • Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZ, Amin J. Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules. 2013; 27,18(7):7533–48; Lin, J., Weng, X., Dharmarajan, R., Chen, Z., Characterization and reactivity of iron based nanoparticles synthesized by tea extracts under various atmospheres (2016) Chemosphere, 25 (169), pp. 413-417
  • Bini, R., Marques, R.F.C., Santos, F.J., Chaker, J.A., Jafelicci, M., Jr., Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes (2012) J Magn Magn Mater, 324 (4), pp. 534-539. , COI: 1:CAS:528:DC%2BC3MXhtlWmtLbM
  • Wang, N., Hsu, C., Zhu, L., Tseng, S., Hsu, J.P., Influence of metal oxide nanoparticles concentration on their zeta potential (2013) J Colloid Interface Sci, 407, pp. 22-28. , COI: 1:CAS:528:DC%2BC3sXhtVKgsrbO, PID: 23838331
  • Shrivastava, S., Bera, T., Sunil Singh, K., Singh, G., Ramachandrarao, P., Dash, D., Characterization of antiplatelet properties of silver nanoparticles (2009) ACS Nano, 3, pp. 1357-1364. , COI: 1:CAS:528:DC%2BD1MXltlKlsLc%3D, PID: 19545167
  • Mahdavi, M., Namvar, F., Ahmad, M.B., Mohamad, R., Green biosynthesis and characterization of magnetic iron oxide (Fe33O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract (2013) Molecules, 18 (5), pp. 5954-5964. , PID: 23698048

Citas:

---------- APA ----------
Crespo, K.A., Baronetti, J.L., Quinteros, M.A., Páez, P.L. & Paraje, M.G. (2017) . Intra- and Extracellular Biosynthesis and Characterization of Iron Nanoparticles from Prokaryotic Microorganisms with Anticoagulant Activity. Pharmaceutical Research, 34(3), 591-598.
http://dx.doi.org/10.1007/s11095-016-2084-0
---------- CHICAGO ----------
Crespo, K.A., Baronetti, J.L., Quinteros, M.A., Páez, P.L., Paraje, M.G. "Intra- and Extracellular Biosynthesis and Characterization of Iron Nanoparticles from Prokaryotic Microorganisms with Anticoagulant Activity" . Pharmaceutical Research 34, no. 3 (2017) : 591-598.
http://dx.doi.org/10.1007/s11095-016-2084-0
---------- MLA ----------
Crespo, K.A., Baronetti, J.L., Quinteros, M.A., Páez, P.L., Paraje, M.G. "Intra- and Extracellular Biosynthesis and Characterization of Iron Nanoparticles from Prokaryotic Microorganisms with Anticoagulant Activity" . Pharmaceutical Research, vol. 34, no. 3, 2017, pp. 591-598.
http://dx.doi.org/10.1007/s11095-016-2084-0
---------- VANCOUVER ----------
Crespo, K.A., Baronetti, J.L., Quinteros, M.A., Páez, P.L., Paraje, M.G. Intra- and Extracellular Biosynthesis and Characterization of Iron Nanoparticles from Prokaryotic Microorganisms with Anticoagulant Activity. Pharm. Res. 2017;34(3):591-598.
http://dx.doi.org/10.1007/s11095-016-2084-0