Artículo

Chaufan, G.; Galvano, C.; Nieves, M.; Mudry, M.D.; Ríos De Molina, M.D.C.; Andrioli, N.B. "Oxidative Response and Micronucleus Centromere Assay in HEp-2 Cells Exposed to Fungicide Iprodione" (2019) Chemical Research in Toxicology
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The fungicide agents are a key component in the fruits and vegetables production. The Iprodione residues are one of the pesticide more frequently found in food products. The available data about the cytotoxicity of iprodione and its metabolites are scarce and do not allow characterization of its genotoxic potential and define the risk assessment.The human larynx epidermoid carcinoma cell line (HEp-2) has been shown to be sensitive to the toxic effects of xenobiotics of different origin and have been often used in citotoxicity and genotoxicity studies. The purpose of this paper is to evaluate the induction of genotoxicity and the role of oxidative stress in HEp-2cell line by exposure to the IP. The MTT test for viability resulted in CL 50 85.86 (77.05-95.68) μg/mL of Iprodione. On the basis of this result, we proceeded to expose the cells to the sublethal concentrations (below the CL 50 ) during 24 h to analyze the mitotic index and nuclear division index in order to determine the subcytotoxic concentrations of IP which the genotoxicity was evaluated. The subcytotoxic concentrations of 7, 17, and 25 μg/mL IP induced aneugenic effects as micronuclei centromere positive whereas 17 μg/mL was a threshold for centromere negative micronuclei induction in HEp-2 cells. The abnormal mitosis was induced for exposition of Hep-2 cells to the three concentrations. According to the result obtained, citotoxicity and genotoxicity oxidative stress studies were performed in 1.5, 7.0, and 25 μg/mL of IP. The results showed that the GSH intracellular content, the SOD activity and the levels of oxidative damage of the proteins were affected lead to redox imbalance. The decreased in the SOD activity and protein oxidation were in according to the result obtained to genotoxicity, suggesting that different biological targets could be affected. © 2019 American Chemical Society.

Registro:

Documento: Artículo
Título:Oxidative Response and Micronucleus Centromere Assay in HEp-2 Cells Exposed to Fungicide Iprodione
Autor:Chaufan, G.; Galvano, C.; Nieves, M.; Mudry, M.D.; Ríos De Molina, M.D.C.; Andrioli, N.B.
Filiación:Laboratorio de Enzimología Estrés y Metabolismo, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Consejo de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Pabellón II, 4 Piso Laboratories. 43-46, Buenos Aires, C1428EGA, Argentina
GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires (IEGEBA-CONICET), Ciudad Universitaria, Pabellón II, 4 Piso Laboratories. 43-46, Buenos Aires, C1428EGA, Argentina
Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Año:2019
DOI: http://dx.doi.org/10.1021/acs.chemrestox.8b00405
Título revista:Chemical Research in Toxicology
Título revista abreviado:Chem. Res. Toxicol.
ISSN:0893228X
CODEN:CRTOE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0893228X_v_n_p_Chaufan

Referencias:

  • McConnell, S., Wightwick, A., Smith, T., Porteous, C., (2003) Code of Environmental Best Practice for ViticultureSunraysia Region, , Environmental best practices. Department of Primary Industries, Melbourne
  • Zhu, X., Jia, C., Duan, L., Zhang, W., Yu, P., He, M., Zhao, E., Residue behavior and dietary intake risk assessment of three fungicides in tomatoes (Lycopersicon esculentum Mill.) under greenhouse conditions (2016) Regul. Toxicol. Pharmacol., 81, pp. 284-287
  • Cantor, K.P., Blair, A., Everett, G., Gibson, R., Burmeister, L.F., Brown, L.M., Dick, F.R., Pesticides and other agricultural risk factors for non-Hodgkin's lymphoma among men in Iowa and Minnesota (1992) Cancer Research, 52 (9), pp. 2447-2455
  • Butinof, M., Fernández, R., Lantieri, M.J., Stimolo, M.I., Blanco, M., Machado, A.L., Sastre, A., Pesticides and agricultural work environments in Argentina (2014) Pesticides-Toxic Aspects, , InTech, London
  • Franchini, G., Butinof, M., Blanco, M.P., Machado, A.L., Fernandez, R.A., Díaz, M.D.P., Occupational risks associated with the use of pesticides in the green belt of Córdoba, Argentina (2016) Acta Toxicológica Argentina, 24 (1), pp. 58-67
  • Wightwick, A., Allinson, G., Pesticide residues in Victorian waterways: A review (2007) Australasian Journal of Ecotoxicology, 13 (3), pp. 91-112
  • Komárek, M., Čadková, E., Chrastný, V., Bordas, F., Bollinger, J.C., Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects (2010) Environ. Int., 36 (1), pp. 138-151
  • Karas, P., Metsoviti, A., Zisis, V., Ehaliotis, C., Omirou, M., Papadopoulou, E.S., Karpouzas, D.G., Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: Towards an optimized depuration of their pesticide-contaminated agro-industrial effluents (2015) Sci. Total Environ., 530-531, pp. 129-139
  • (2016), http://www.ewg.org/research/pesticides-baby-food, 1995. Date of access: December; (2017) Science and Technology. Pesticide Data Program, , https://www.ams.usda.gov/sites/default/files/media/2013%20PDP%20Anuual%20Summary.pdf, 2014. Date of access: March
  • Wang, S., Xu, Y., Pan, C., Jiang, S., Liu, F., Application of matrix solid-phase dispersion and liquid chromatography-mass spectrometry to fungicide residue analysis in fruits and vegetables (2007) Anal. Bioanal. Chem., 387 (2), pp. 673-685
  • Zhang, M., Wang, W., Zhang, Y., Teng, Y., Xu, Z., Effects of fungicide iprodione and nitrification inhibitor 3, 4-dimethylpyrazole phosphate on soil enzyme and bacterial properties (2017) Sci. Total Environ., 599, pp. 254-263
  • (1998) Environmental Protection Agency: Re-registration Eligibility Decision (RED), Iprodione., , EPA, Washington, D.C
  • Radice, S., Marabini, L., Gervasoni, M., Ferraris, M., Chiesara, E., Adaptation to oxidative stress: Effects of vinclozolin and iprodione on the HepG2 cell line (1998) Toxicology, 129 (23), pp. 183-191
  • Radice, S., Ferraris, M., Marabini, L., Grande, S., Chiesara, E., Effect of iprodione, a dicarboximide fungicide, on primary cultured rainbow trout (Oncorhynchus mykiss) hepatocytes (2001) Aquat. Toxicol., 54 (12), pp. 51-58
  • Washington, T., Tchounwou, P.B., Cytotoxicity and transcriptional activation of stress genes in human liver carcinoma (HepG2) cells exposed to iprodione (2004) Int. J. Environ. Res. Public Health, 1 (1), pp. 12-20
  • Prutner, W., Nicken, P., Haunhorst, E., Hamscher, G., Steinberg, P., Effects of single pesticides and binary pesticide mixtures on estrone production in H295R cells (2013) Arch. Toxicol., 87 (12), pp. 2201-2214
  • https://eur-lex.europa.eu/eli/reg_impl/2017/2091/oj, accessed 12/01/2018; Stammati, A., Nebbia, C., De Angelis, I., Albo, A.G., Carletti, M., Rebecchi, C., Dacasto, M., Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines (2005) Toxicol. in Vitro, 19 (7), pp. 853-858
  • De Angelis, I., Hoogenboom, L.A.P., Huveneers-Oorsprong, M.B.M., Zucco, F., Stammati, A., Established cell lines for safety assessment of food contaminants: Differing furazolidone toxicity to v 79, HEp-2 and Caco-2 cells (1994) Food Chem. Toxicol., 32 (5), pp. 481-488
  • Osman, I.F., Baumgartner, A., Cemeli, E., Fletcher, J.N., Anderson, D., Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells (2010) Nanomedicine, 5 (8), pp. 1193-1203
  • Bianchi, E., Lessing, G., Brina, K.R., Angeli, L., Andriguetti, N.B., Peruzzo, J.R.S., Da Silva, L.B., Monitoring the genotoxic and cytotoxic potential and the presence of pesticides and hydrocarbons in water of the Sinos River basin, southern Brazil (2017) Arch. Environ. Contam. Toxicol., 72 (3), pp. 321-334
  • Andrioli, N.B., Chaufan, G., Coalova, I., Ríos De Molina, M.C., Mudry, M.D., HEp-2 como modelo experimental para evaluar los efectos genotóxicos del arsénico inorgánico pentavalente (2017) BAG. Journal of Basic and Applied Genetics, 28 (2), pp. 15-24
  • Chaufan, G., Coalova, I., Molina, M.D.C.R.D., Glyphosate commercial formulation causes cytotoxicity, oxidative effects, and apoptosis on human cells: Differences with its active ingredient (2014) Int. J. Toxicol., 33 (1), pp. 29-38
  • Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65 (12), pp. 55-63
  • Talorete, T.P., Bouaziz, M., Sayadi, S., Isoda, H., Influence of medium type and serum on MTT reduction by flavonoids in the absence of cells (2007) Cytotechnology, 52 (3), pp. 189-198
  • Fenech, M., The in vitro micronucleus technique (2000) Mutat. Res., Fundam. Mol. Mech. Mutagen., 455 (12), pp. 81-95
  • Steinberg, E.R., Nieves, M., Fantini, L., Mudry, M.D., Primates karyological diagnosis and management programs applications (2014) J. Med. Primatol., 43 (6), pp. 455-467
  • Aebi, H., Catalase in vitro (1984) Methods in Enzymology, 105, pp. 121-126. , Academic Press, New York
  • Beauchamp, C., Fridovich, I., Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels (1971) Anal. Biochem., 44 (1), pp. 276-287
  • Habig, W.H., Pabst, M.J., Jakoby, W.B., Glutathione S-transferase AA from rat liver (1976) Arch. Biochem. Biophys., 175 (2), pp. 710-716
  • Anderson, M.E., Determination of glutathione and glutathione disulfide in biological samples (1985) Methods in Enzymology, 113, pp. 548-555. , Academic Press, New York
  • Coalova, I., De Molina, M.D.C.R., Chaufan, G., Influence of the spray adjuvant on the toxicity effects of a glyphosate formulation (2014) Toxicol. in Vitro, 28 (7), pp. 1306-1311
  • Reznick, A.Z., Packer, L., Oxidative damage to proteins: Spectrophotometric method for carbonyl assay (1994) Methods in Enzymology, 233, pp. 357-363. , Academic Press, New York
  • Harrison, X.A., A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology and evolution (2015) PeerJ, 3
  • (2017) A Language and Environment for Statistical Computing, , R Core Team, R Vienna, Austria
  • Bates, D., Mächler, M., Bolker, B., Walker, S., Fitting linear mixed-effects models using lme4 ArXiv Preprint arXiv:1406.5823, , (2014). accessed 12/01/2018
  • Gebel, T.W., Genotoxicity of arsenical compounds (2001) Int. J. Hyg. Environ. Health, 203 (3), pp. 249-262
  • Andrioli, N.B., Soloneski, S., Larramendy, M.L., Mudry, M.D., Induction of microtubule damage in Allium cepa meristematic cells by pharmaceutical formulations of thiabendazole and griseofulvin (2014) Mutat. Res., Genet. Toxicol. Environ. Mutagen., 772, pp. 1-5
  • Maciejowski, J., Li, Y., Bosco, N., Campbell, P.J., De Lange, T., Chromothripsis and kataegis induced by telomere crisis (2015) Cell, 163 (7), pp. 1641-1654
  • Fenech, M., Knasmueller, S., Bolognesi, C., Bonassi, S., Holland, N., Migliore, L., Kirsch-Volders, M., Molecular mechanisms by which in vivo exposure to exogenous chemical genotoxic agents can lead to micronucleus formation in lymphocytes in vivo and ex vivo in humans (2016) Mutat. Res., Rev. Mutat. Res., 770, pp. 12-25
  • Kirsch-Volders, M., Vanhauwaert, A., Eichenlaub-Ritter, U., Decordier, I., Indirect mechanisms of genotoxicity (2003) Toxicol. Lett., 140, pp. 63-74
  • Gadeva, P., Dimitrov, B., Genotoxic effects of the pesticides Rubigan, Omite and Rovral in root-meristem cells of Crepis capillaris L (2008) Mutat. Res., Genet. Toxicol. Environ. Mutagen., 652 (2), pp. 191-197
  • Fadic, X., Placencia, F., Domínguez, A.M., Cereceda-Balic, F., Tradescantia as a biomonitor for pesticide genotoxicity evaluation of iprodione, carbaryl, dimethoate and 4, 4′-DDE (2017) Sci. Total Environ., 575, pp. 146-151
  • Bolognesi, C., Genotoxicity of pesticides: A review of human biomonitoring studies (2003) Mutat. Res., Rev. Mutat. Res., 543 (3), pp. 251-272
  • Graillot, V., Takakura, N., Hegarat, L.L., Fessard, V., Audebert, M., Cravedi, J.P., Genotoxicity of pesticide mixtures present in the diet of the French population (2012) Environmental and Molecular Mutagenesis, 53 (3), pp. 173-184
  • Wilhelm, C.M., Calsing, A.K., Da Silva, L.B., Assessment of DNA damage in floriculturists in southern Brazil (2015) Environ. Sci. Pollut. Res., 22 (11), pp. 8182-8189
  • Rizzati, V., Briand, O., Guillou, H., Gamet-Payrastre, L., Effects of pesticide mixtures in human and animal models: An update of the recent literature (2016) Chem.-Biol. Interact., 254, pp. 231-246
  • (2017) In Vitro Mammalian Chromosomal Aberration Test, OECD Guidelines for the Testing of Chemicals, Section 4, , http://sci-hub.tw/10.1787/9789264264649-en, (2016), Test No. 473: éditions OCDE, Paris, Date of access: March
  • Westerink, W.M., Schirris, T.J., Horbach, G.J., Schoonen, W.G., Development and validation of a high-content screening in vitro micronucleus assay in CHO-k1 and HepG2 cells (2011) Mutat. Res., Genet. Toxicol. Environ. Mutagen., 724 (1), pp. 7-21
  • Wilkening, S., Stahl, F., Bader, A., Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties (2003) Drug Metabolism and Disposition, 31 (8), pp. 1035-1042
  • Andrighetti-Fröhner, C.R., Kratz, J.M., Antonio, R.V., Creczynski-Pasa, T.B., Barardi, C.R., Simoes, C.M., In vitro testing for genotoxicity of violacein assessed by Comet and Micronucleus assays (2006) Mutat. Res., Genet. Toxicol. Environ. Mutagen., 603 (1), pp. 97-103
  • Rizo, W.F., Ferreira, L.E., Colnaghi, V., Martins, J.S., Franchi, L.P., Takahashi, C.S., Fachin, A.L., Cytotoxicity and genotoxicity of coronaridine from Tabernaemontana catharinensis A. DC in a human laryngeal epithelial carcinoma cell line (Hep-2) (2013) Genet. Mol. Biol., 36 (1), pp. 105-110
  • Igomaa, I.E., Bhatt, S., Liehr, T., Bakr, M., El-Tayeb, T.A., A study on biological application of ag and co/ag nanoparticles cytotoxicity and genotoxicity (2015) Nanomaterials and Nanotechnology for Composites: Design, Simulation and Applications, p. 139
  • Dos Santos Branco, C., De Lima, É.D., Rodrigues, T.S., Scheffel, T.B., Scola, G., Laurino, C.C.F.C., Salvador, M., Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells (2015) Chem.-Biol. Interact., 231, pp. 108-118
  • Ahamed, M., Alhadlaq, H.A., Ahmad, J., Siddiqui, M.A., Khan, S.T., Musarrat, J., Al-Khedhairy, A.A., Comparative cytotoxicity of dolomite nanoparticles in human larynx HEp2 and liver HepG2 cells (2015) J. Appl. Toxicol., 35 (6), pp. 640-650
  • (2017) Vitro Mammalian Cell Micronucleus Test, , http://sci-hub.tw/10.1787/9789264224438-en, (2014), Test No. 487: OECD Publishing, Paris, Date of access: March
  • Kirkland, D.J., Müller, L., Interpretation of the biological relevance of genotoxicity test results: The importance of thresholds (2000) Mutat. Res., Genet. Toxicol. Environ. Mutagen., 464 (1), pp. 137-147

Citas:

---------- APA ----------
Chaufan, G., Galvano, C., Nieves, M., Mudry, M.D., Ríos De Molina, M.D.C. & Andrioli, N.B. (2019) . Oxidative Response and Micronucleus Centromere Assay in HEp-2 Cells Exposed to Fungicide Iprodione. Chemical Research in Toxicology.
http://dx.doi.org/10.1021/acs.chemrestox.8b00405
---------- CHICAGO ----------
Chaufan, G., Galvano, C., Nieves, M., Mudry, M.D., Ríos De Molina, M.D.C., Andrioli, N.B. "Oxidative Response and Micronucleus Centromere Assay in HEp-2 Cells Exposed to Fungicide Iprodione" . Chemical Research in Toxicology (2019).
http://dx.doi.org/10.1021/acs.chemrestox.8b00405
---------- MLA ----------
Chaufan, G., Galvano, C., Nieves, M., Mudry, M.D., Ríos De Molina, M.D.C., Andrioli, N.B. "Oxidative Response and Micronucleus Centromere Assay in HEp-2 Cells Exposed to Fungicide Iprodione" . Chemical Research in Toxicology, 2019.
http://dx.doi.org/10.1021/acs.chemrestox.8b00405
---------- VANCOUVER ----------
Chaufan, G., Galvano, C., Nieves, M., Mudry, M.D., Ríos De Molina, M.D.C., Andrioli, N.B. Oxidative Response and Micronucleus Centromere Assay in HEp-2 Cells Exposed to Fungicide Iprodione. Chem. Res. Toxicol. 2019.
http://dx.doi.org/10.1021/acs.chemrestox.8b00405