Milanese, F.; Rapalini, A.; Slotznick, S.P.; Tobin, T.S.; Kirschvink, J.; Olivero, E. "Late Cretaceous paleogeography of the Antarctic Peninsula: New paleomagnetic pole from the James Ross Basin" (2019) Journal of South American Earth Sciences. 91:131-143
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Two paleomagnetic poles of 80 and 75 Ma have been computed from 191 to 123 paleomagnetic samples, respectively, of the marine sedimentary units of the Upper Cretaceous Marambio Group exposed in the James Ross Island, Antarctic Peninsula. Paleomagnetic behaviors during stepwise thermal demagnetization and rock magnetic analyses indicate that magnetization is likely primary and carried by SD-PSD detrital titanomagnetite. Application of an inclination shallowing correction by the elongation-inclination method yielded a significant inclination shallowing affecting the older (ca. 80 Ma) succession exposed in the northwest area of the island. However, the paleomagnetic directions computed from the younger (ca. 75 Ma) succession outcropping in the southeast corner of the island yielded an indeterminate result using the same analysis. The inclination shallowing-corrected 80 Ma paleopole position plus previous ones of ca.110, 90 and 55 Ma were used to construct the Apparent Polar Wander Path (APWP) for the Antarctic Peninsula during the Late Cretaceous-Paleocene. This path confirms that oroclinal bending of the Antarctic Peninsula as well as relative displacement with respect to East Antarctica are negligible since 110 Ma. Comparison with the apparent polar wander path for South America for the 130-45 Ma period suggests that this continent and the Antarctic Peninsula kept a very similar relative paleogeographic position since 110 Ma until 55 Ma, which likely meant a physical link between both continental masses. During that period, both continents underwent a relatively fast southward displacement of around 7° and a clockwise rotation relative to the Earth spin axis that can be bracketed between around 100 and 90 Ma. Oroclinal bending of the Fuegian Andes was likely due to tectonic interactions between the Patagonian-Fuegian Andes and the Antarctic Peninsula promoted, at least partially, by such displacements. By 55 Ma the Antarctic Peninsula probably was starting or about to start its final separation from South America. © 2019 Elsevier Ltd


Documento: Artículo
Título:Late Cretaceous paleogeography of the Antarctic Peninsula: New paleomagnetic pole from the James Ross Basin
Autor:Milanese, F.; Rapalini, A.; Slotznick, S.P.; Tobin, T.S.; Kirschvink, J.; Olivero, E.
Filiación:Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), CONICET, Universidad de Buenos Aires, Argentina
University of California, Berkeley, Berkeley, CA 94720, United States
University of Alabama, Tuscaloosa, AL, United States
Division of Geological and Planetary Sciences, California Institute of Techonoly, Pasadena, CA, United States
Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan
CADIC, CONICET, Bernardo Houssay 200, Ushuaia, 9410, Argentina
Palabras clave:Apparent polar wander path; Gustav group; Marambio group; Paleomagnetism; apparent polar wander path; Cretaceous; magnetic field; magnetization; paleogeography; paleomagnetism; Antarctic Peninsula; Antarctica; James Ross Island; West Antarctica
Página de inicio:131
Página de fin:143
Título revista:Journal of South American Earth Sciences
Título revista abreviado:J. South Am. Earth Sci.


  • Bakhmutov, V., Shpyra, V., Palaeomagnetism of late cretaceous-paleocene igneous rocks from the western part of the antarctic Peninsula (Argentine islands archipelago) (2011) Geol. Q., 55, pp. 285-300
  • Barker, P.F., Scotia sea regional tectonic evolution: implications for mantle flow and palaeocirculation (2001) Earth Sci. Rev.
  • Barron, E.J., Hashimoto, J., Ii, J.L.S., Hay, W.W., Paleogeography, 180 million years ago to present (1981) Eclogae Geol. Helv., 74, pp. 443-470
  • Crame, J.A., Francis, J.E., Cantrill, D.J., Pirrie, D., Maastrichtian stratigraphy of Antarctica (2004) Cretac. Res., 25, pp. 411-423
  • Cunningham, W.D., Klepeis, K.A., Gose, W.A., Dalziel, I.W.D., The Patagonian Orocline: new Paleomagnetic Data From the Andean Magmatic Arc in Tierra del Fuego, Chile (1991) journal of geoph, 96, pp. 16061-16067
  • Dalziel, I.W.D., Elliot, D.H., The Scotia arc and Antarctic margin (1973) The Ocean Basins and Margins - the South Atlantic, pp. 171-246. , A.E.M. Naim F.G. Stehl Springer Boston
  • Dalziel, I.W.D., Kligfield, R., Lowrie, W., Opdyke, N.D., No title (1973) Implications of Continental Drift to the Earth Sciences, 1, pp. 87-101
  • Dalziel, I.W.D., Lawver, L.A., Norton, I.O., Gahagan, L.M., The Scotia arc: genesis, evolution, global significance (2013) Annu. Rev. Earth Planet Sci., 41, pp. 767-793
  • Del Valle, R.A., Fourcade, N.H., Medina, F.A., Geología del extremo norte del borde oriental de la península antártica e islas adyacentes entre los 63° 25’ y los 65° 15’ de latitud sur (1983), Dirección Nacional del Antártico, Instituto Antártico Argentino; Diraison, M., Cobbold, P.R., Gapais, D., Rossello, E.A., Le Corre, C., Cenozoic crustal thickening, wrenching and rifting in the foothills of the southernmost Andes (2000) Tectonophysics, 316, pp. 91-119
  • Dunlop, D.J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data (2002) J. Geophys. Res., 107, pp. 1-22
  • Eagles, G., Tectonic reconstructions of the southernmost Andes and the Scotia sea during the opening of the drake passage (2016) Geodynamic Evolution of the Southernmost Andes, pp. 75-108. , M.C. Ghiglione Springer Cham
  • Eagles, G., Jokat, W., Tectonic reconstructions for paleobathymetry in drake passage (2014) Tectonophysics, 611, pp. 28-50
  • Eagles, G., Livermore, R., Morris, P., Small basins in the Scotia sea: the eocene drake passage gateway (2006) Earth Planet. Sci. Lett., 242, pp. 343-353
  • Eagles, G., Livermore, R.A., Fairhead, J.D., Morris, P., Tectonic evolution of the west Scotia sea (2005) J. Geophys. Res.: Solid Earth, 110, pp. 1-19
  • Ernesto, M., Marques, L.S., Piccirillo, E.M., Molina, E.C., Ussami, N., Comin-Chiaramonti, P., Bellieni, G., Paraná Magmatic Province-Tristan da Cunha plume system: fixed versus mobile plume, petrogenetic considerations and alternative heat sources (2002) J. Volcanol. Geoth. Res., 118, pp. 15-36
  • Fisher, R., Dispersion on a sphere (1953) Proc. Math. Phys. Eng. Sci., 217, pp. 295-305
  • Francis, J.E., Crame, J.A., Pirrie, D., (2006) Cretaceous-Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctica: Introduction, 258, pp. 1-5. , Geological Society of London, Special Publications
  • Gao, L., Zhao, Y., Yang, Z., Liu, J., Liu, X., Zhang, S.-H., Pei, J., New paleomagnetic and 40Ar/39Ar geochronological results for the South Shetland Islands, West Antarctica, and their tectonic implications (2018) J. Geophys. Res.: Solid Earth, 123, pp. 4-30
  • Ghidella, M.E., Yáñez, G., LaBrecque, J.L., Revised tectonic implications for the magnetic anomalies of the western Weddell Sea (2002) Tectonophysics, 347, pp. 65-86
  • Ghiglione, M.C., Cristallini, E.O., Have the southernmost Andes been curved since Late Cretaceous time? An analog test for the Patagonian Orocline (2007) Geology, 35, pp. 13-16
  • Grunow, A.M., New paleomagnetic data from the Antarctica Peninsula and their tectonic implications (1993) J. Geophys. Res.: Solid Earth, 98, pp. 13815-13833
  • Harrison, C.G.A., Barron, E.J., Hay, W.W., Mesozoic evolution of the antarctic Peninsula and the southern Andes (1979) Geology, 7, pp. 374-378
  • Hathway, B., Continental rift to back-arc basin : jurassic – cretaceous stratigraphical and structural evolution of the larsen basin, antarctic Peninsula (2000) J. Geol. Soc., 157, pp. 417-432
  • Hervé, F., Miller, H., Pimpirev, C., Patagonia — Antarctica connections before Gondwana break-up (2006) Antarctica, pp. 217-227. , Springer Berlin, Heidelberg
  • Huang, W., Dupont-Nivet, G., Lippert, P.C., Van Hinsbergen, D.J.J., Hallot, E., Inclination shallowing in eocene linzizong sedimentary rocks from southern tibet: correction, possible causes and implications for reconstructing the India-asia collision (2013) Geophys. J. Int., 194, pp. 1390-1411
  • Ineson, J.R., Coarse-grained submarine fan and slope apron deposits in a Cretaceous back-arc basin, Antarctica (1989) Sedimentology, 36, pp. 793-819
  • Ineson, J.R., Crame, J.A., Thomson, M.R.A., Lithostratigraphy of the cretaceous strata of west James Ross island, Antarctica (1986) Cretac. Res., 7, pp. 141-159
  • Jones, C.H., User-driven integrated software lives: “PaleoMag” paleomagnetics analysis on the macintosh (2002) Comput. Geosci., 28, pp. 1145-1151
  • Kirschvink, J.L., The least-squares line and plane and the analysis of palaeomagnetic data (1980) Geophys. J. R. Astron. Soc., 62, pp. 699-718
  • Kodama, K.P., Paleomagnetism of Sedimentary Rocks: Processes and Interpretation (2012), Wiley-Blackwell; Kodama, K.P., Simplification of the anisotropy-based inclination correction technique for magnetite- and haematite-bearing rocks: a case study for the Carboniferous Glenshaw and Mauch Chunk Formations, North America (2009) Geophys. J. Int., 176, pp. 467-477
  • König, M., Jokat, W., The mesozoic breakup of the Weddell Sea (2006) J. Geophys. Res.: Solid Earth, 111, pp. 1-28
  • Koymans, M.R., Langereis, C.G., Pastor-Galán, D., van Hinsbergen, D.J.J., an online multi-platform open source environment for paleomagnetic data analysis (2016) Comput. Geosci., 93, pp. 127-137
  • Kraemer, P.E., Orogenic shortening and the origin of the Patagonian orocline (56° S.Lat) (2003) J. S. Am. Earth Sci., 15, pp. 731-748
  • Lagabrielle, Y., Goddéris, Y., Donnadieu, Y., Mallavielle, J., Suarez, M., The tectonic history of Drake Passage and its possible impacts on global climate (2009) Earth Planet. Sci. Lett., 279, pp. 197-211
  • Lawver, L.A., Gahagan, L.M., Evolution of cenozoic seaways in the circum-antarctic region (2003) Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, pp. 11-37
  • Lawver, L.A., Gahagan, L.M., Coffin, M.F., The development of paleoseaways around Antarctica (1992) The Antarctic Paleoenvironment: A Perspective on Global Change: Part One, 56, pp. 7-30
  • Lirio, J.M., Marenssi, S.A., Santillana, S., Marshall, P., El Grupo Marambio en el Sudeste de la isla James Ross, Antártida (1989), Contribución del Instituto Antártico Argentino; Livermore, R., Hillenbrand, C.D., Meredith, M., Eagles, G., Drake Passage and Cenozoic climate: an open and shut case? (2007) Geochem. Geophys. Geosyst., 8
  • Livermore, R., Nankivell, A., Eagles, G., Morris, P., Paleogene opening of drake passage (2005) Earth Planet. Sci. Lett., 236, pp. 459-470
  • Lodolo, E., Donda, F., Tassone, A., Western Scotia sea margins: improved constraints on the opening of the drake passage (2006) J. Geophys. Res.: Solid Earth, 111, pp. 1-14
  • Marenssi, S.A., Lirio, J.M., Santillana, S., Martinioni, D.R., Palamarczuk, S., El Cretácico Superior del sudeste de la isla James Ross, Antártida (1992) Geología de La Isla James Ross, pp. 77-85. , C.A. Rinaldi Instituto Antártico Argentino Buenos Aires
  • Martinioni, D.R., La Formación Rabot (Cretácico superior, Isla James Ross, Antártida): un ciclo transgresivo-regresivo de plataforma con dominio de procesos de tormenta (1992) Geología de La Isla James Ross, Antártida, pp. 101-123. , C.A. Rinaldi Instituto Antártico Argentino Buenos Aires
  • McArthur, J.M., Crame, J.A., Thirlwall, M.F., Definition of Late Cretaceous stage boundaries in Antarctica using strontium isotope stratigraphy (2000) J. Geol., 108, pp. 623-640
  • McFadden, P.L., McElhinny, M.W., The combined analysis of remagnetization circles and direct observations in palaeomagnetism (1988) Earth Planet. Sci. Lett., 87, pp. 161-172
  • McFadden, P.L.L., McElhinny, M.W., Classification of the reversal test in palaeomagnetism (1990) Geophys. J. Int., 103, pp. 725-729
  • Menichetti, M., Lodolo, E., Tassone, A., Structural geology of the Fueguian Andes and Magallanes fold-and-thrust belt - Tierra del Fuego Island (2008) Geol. Acta, 6, pp. 85-100
  • Milanese, F.N., Magnetoestratigrafía del Cretácico Superior de la Magnetoestratigrafía del Cretácico Superior de la cuenca James Ross, Antártida (2018), Universidad de Buenos Aires; Milanese, F.N., Olivero, E.B., Kirschvink, J.L., Rapalini, A.E., Magnetostratigraphy of the Rabot formation, upper cretaceous, James Ross Basin, antarctic Peninsula (2017) Cretac. Res., 72, pp. 172-187
  • Milanese, F.N., Olivero, E.B., Raffi, M.E., Franceschinis, P.R., Gallo, L.C., Skinner, S.M., Mitchell, R.N., Rapalini, A.E., Mid campanian-lower maastrichtian magnetostratigrahy of the James Ross Basin, Antarctica: chronostratigraphical implications (2018) Basin Res.
  • Nawrocki, J., Panczyk, M., Williams, I.S., Isotopic ages and palaeomagnetism of selected magmatic rocks from king George island (antarctic Peninsula) (2010) J. Geol. Soc., 167, pp. 1063-1079. , London
  • Ogg, J.G., Ogg, G.M., Gradstein, F.M., A Concise Geologic Time Scale: 2016 (2016), Elsevier B.V. Amsterdam, Oxford, Cambridge; Olivero, E.B., Sedimentary cycles, ammonite diversity and palaeoenvironmental changes in the Upper Cretaceous Marambio Group, Antarctica (2012) Cretac. Res., 34, pp. 348-366
  • Olivero, E.B., Asociaciones de Amonites de la Formación Santa Marta (cretácico tardío), isla James Ross, antártida (1992) Geología de La Isla James Ross, pp. 45-75. , C.A. Rinaldi Instituto Antártico Argentino Buenos Aires
  • Olivero, E.B., Early campanian heteromorph ammonites from James Ross island, Antarctica (1988) Natl. Geogr. Res., 4, pp. 259-271
  • Olivero, E.B., Nuevos amonites campanianos de la Isla James Ross, antártida (1984) Ameghiniana, 21, pp. 53-84
  • Olivero, E.B., Scasso, R.A., Rinaldi, C.A., (1986) Revision of the Marambio Group, James Ross Island, Antarctica, 331, p. 27. , Contribution del Instituto Antártico Argentino
  • Pan, Y., Zhu, R., Banerjee, S.K., Gill, J., Williams, Q., Rock magnetic properties related to thermanl treatment of siderite: behavior and interpretation (2000) J. Geophys. Res., 105, pp. 783-794
  • Pirrie, D., Crame, J.A., Lomas, S.A., Riding, J.B., Late cretaceous stratigraphy of the admiralty sound region, James Ross Basin, Antarctica (1997) Cretac. Res., 18, pp. 109-137
  • Poblete, F., Arriagada, C., Roperch, P., Astudillo, N., Hervé, F., Kraus, S., Le Roux, J.P., Paleomagnetism and tectonics of the south Shetland islands and the northern antarctic Peninsula (2011) Earth Planet. Sci. Lett., 302, pp. 299-313
  • Poblete, F., Roperch, P., Arriagada, C., Ruffet, G., Ramírez de Arellano, C., Hervé, F., Poujol, M., Late cretaceous–early eocene counterclockwise rotation of the fueguian Andes and evolution of the patagonia–antarctic Peninsula system (2016) Tectonophysics, 668-669, pp. 15-34
  • Rapalini, A.E., A paleomagnetic analysis of the Patagonian orocline (2007) Geol. Acta, 5, pp. 287-294
  • Rapalini, A.E., Peroni, J., Luppo, T., Tassone, A., Cerredo, M.E., Esteban, F., Lippai, H., Vilas, J.F., Palaeomagnetism of Mesozoic Magmatic Bodies of the Fuegian Cordillera: Implications for the Formation of the Patagonian Orocline (2015), p. 3. , Geological Society London Special Publications SP425; Riding, J.B., Crame, J.A., Aptian to coniacian (Early-Late cretaceous) palynostratigraphy of the Gustav group, James Ross Basin, Antarctica (2002) Cretac. Res., 23, pp. 739-760
  • Riding, J.B., Crame, J.A., Dettmann, M.E., Cantrill, D.J., The age of the base of the Gustav group in the James Ross Basin, Antarctica (1998) Cretac. Res., 19, pp. 87-105
  • Rinaldi, C.A., Massabie, A., Morelli, J., Roseman, H.L., del Valle, R.A., (1978) Geologia de la isla Vicecomodoro Marambio, 217, pp. 1-37. , Contribución del Instituto Antártico Argentino
  • Scasso, R.A., Olivero, E.B., Buatois, L.A., Lithofacies, biofacies, and ichnoassemblage evolution of a shallow submarine volcaniclastic fan-shelf depositional system (Upper Cretaceous, James Ross Island, Antarctica) (1991) J. S. Am. Earth Sci., 4, pp. 239-260
  • Scher, H.D., Martin, E.E., Timing and climatic consequences of the opening of drake passage (2006) Science, 312, pp. 428-430
  • Somoza, R., Eocene paleomagnetic pole for South America: northward continental motion in the cenozoic, opening of drake passage and caribbean convergence (2007) J. Geophys. Res.: Solid Earth, 112, pp. 1-11
  • Somoza, R., Zaffarana, C.B., Mid-Cretaceous polar standstill of South America, motion of the Atlantic hotspots and the birth of the Andean cordillera (2008) Earth Planet. Sci. Lett., 271, pp. 267-277
  • Storey, B.C., Vaughan, A.P.M., Millar, I.L., Geodynamic evolution of the antarctic Peninsula during mesozoic times and its bearing on Weddell Sea history (1996) Geological Society of London, Special Publications, 108, pp. 87-103
  • Tauxe, L., Kent, D.V., A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic field dipolar (2004) Timescales of the Paleomagnetic Field, 145, pp. 101-115
  • Tauxe, L., Kodama, K.P., Kent, D.V., Testing corrections for paleomagnetic inclination error in sedimentary rocks: a comparative approach (2008) Phys. Earth Planet. In., 169, pp. 152-165
  • Tobin, T.S., Ward, P.D., Steig, E.J., Olivero, E.B., Hilburn, I.A., Mitchell, R.N., Diamond, M.R., Kirschvink, J.L., Extinction patterns, δ 18 O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: links with Deccan volcanism (2012) Palaeogeogr. Palaeoclimatol. Palaeoecol., 350-352, pp. 180-188
  • Torres Carbonell, P.J., Dimieri, L.V., Olivero, E.B., Bohoyo, F., Galindo-Zaldívar, J., Structure and tectonic evolution of the fuegian Andes (southernmost South America) in the framework of the Scotia arc development (2014) Glob. Planet. Chang., 123, pp. 174-188
  • Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P.V., van Hinsbergen, D.J.J., Tohver, E., Phanerozoic polar wander, palaeogeography and dynamics (2012) Earth Sci. Rev., 114, pp. 250-278
  • Valencio, D.A., Mendía, J.E., Vilas, J.F., Paleomagnetism and K–Ar of mesozoic and cenozoic igneous rocks from Antarctica (1979) Earth Planet. Sci. Lett., 45, pp. 61-68
  • Vandamme, D., A new method to determine paleosecular variation (1994) Phys. Earth Planet. In., 85, pp. 131-142
  • Vérard, C., Flores, K., Stampfli, G., Geodynamic reconstructions of the South America-Antarctica plate system (2012) J. Geodyn., 53, pp. 43-60
  • Watts, D.R., Watts, G.C., Bramall, A.M., Cretaceous and early tertiary paleomagnetic results from the antarctic Peninsula (1984) Tectonics, 3, pp. 333-346
  • Whitham, A.G., Ineson, J.R., Pirrie, D., Marine volcaniclastics of the Hidden Lake formation (coniacian) of James Ross island, Antarctica: an enigmatic element in the history of a back-arc basin (2006) Geological Society of London, Special Publications, 258, pp. 21-47


---------- APA ----------
Milanese, F., Rapalini, A., Slotznick, S.P., Tobin, T.S., Kirschvink, J. & Olivero, E. (2019) . Late Cretaceous paleogeography of the Antarctic Peninsula: New paleomagnetic pole from the James Ross Basin. Journal of South American Earth Sciences, 91, 131-143.
---------- CHICAGO ----------
Milanese, F., Rapalini, A., Slotznick, S.P., Tobin, T.S., Kirschvink, J., Olivero, E. "Late Cretaceous paleogeography of the Antarctic Peninsula: New paleomagnetic pole from the James Ross Basin" . Journal of South American Earth Sciences 91 (2019) : 131-143.
---------- MLA ----------
Milanese, F., Rapalini, A., Slotznick, S.P., Tobin, T.S., Kirschvink, J., Olivero, E. "Late Cretaceous paleogeography of the Antarctic Peninsula: New paleomagnetic pole from the James Ross Basin" . Journal of South American Earth Sciences, vol. 91, 2019, pp. 131-143.
---------- VANCOUVER ----------
Milanese, F., Rapalini, A., Slotznick, S.P., Tobin, T.S., Kirschvink, J., Olivero, E. Late Cretaceous paleogeography of the Antarctic Peninsula: New paleomagnetic pole from the James Ross Basin. J. South Am. Earth Sci. 2019;91:131-143.