Artículo

Toussaint, E.F.A.; Hendrich, L.; Hájek, J.; Michat, M.C.; Panjaitan, R.; Short, A.E.Z.; Balke, M. "Evolution of Pacific Rim diving beetles sheds light on Amphi-Pacific biogeography" (2017) Ecography. 40(4):500-510
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The origin of biodiversity in the Neotropics predominantly stems either from Gondwana breakup or late dispersal events from the Nearctic region. Here, we investigate the biogeography of a diving beetle clade whose distribution encompasses parts of the Oriental region, the Indo-Australian archipelago (IAA) and the Neotropics. We reconstructed a dated molecular phylogeny, inferred diversification dynamics and estimated ancestral areas under different biogeographic assumptions. For the Oriental region and the IAA, we reveal repeated and complex colonization patterns out of Australia, across the major biogeographic lines in the region (e.g. Wallace's Line). The timing of colonization events across the IAA broadly coincides with the proposed timing of the formation of major geographic features in the region. Our phylogenetic hypothesis recovers Neotropical species nested in two derived clades. We recover an origin of the group in the early Eocene about 55 million yr ago, long after the break-up of Gondwana initiated, but before a complete separation of Australia, Antarctica and the Neotropics. When allowing an old Gondwanan ancestor, we reconstruct an intricate pattern of Gondwanan vicariance and trans-Pacific long-distance dispersal from Australia toward the Neotropics. When restricting the ancestral range to more plausible geological area combinations in the Eocene, we infer an Australian origin with two trans-Pacific long-distance dispersal events toward the Neotropics. Our results support on one hand a potential Gondwanan signature associated with regional extinctions in the Cenozoic and with Antarctica serving as a link between Australia and the Neotropics. On the other hand, they also support a trans-Pacific dispersal of these beetles toward the Andean coast in the Oligocene. © 2016 The Authors

Registro:

Documento: Artículo
Título:Evolution of Pacific Rim diving beetles sheds light on Amphi-Pacific biogeography
Autor:Toussaint, E.F.A.; Hendrich, L.; Hájek, J.; Michat, M.C.; Panjaitan, R.; Short, A.E.Z.; Balke, M.
Filiación:Division of Entomology, Biodiversity Inst. and Dept of Ecology and Evolutionary Biology, Univ. of Kansas, Lawrence, KS 66045, United States
SNSB-Bavarian State Collection of Zoology, Münchhausenstraße 21, Munich, DE-81247, Germany
GeoBioCenter, Ludwig-Maximilians Univ., Munich, Germany
Dept of Entomology, National Museum, Cirkusová 1740, CZ-193 00 Praha 9, Horní Počernice, Czech Republic
IBBEA-CONICET, Laboratory of Entomology-DBBE_FCEN, Univ. of Buenos Aires, Buenos Aires, Argentina
Dept of Biology, Faculty of Sciences and Mathematics, State Univ. of Papua (UNIPA), Jalan Gunung Salju Amban, West Papua, Manokwari 98314, Indonesia
Palabras clave:beetle; biodiversity; biogeography; Cenozoic; colonization; dispersal; Eocene; evolutionary biology; Gondwana; Nearctic Region; Neotropical Region; Oligocene; Oriental Region; phylogenetics; phylogeny; vicariance; Andes; Antarctica; Australia; Indonesia; Pacific Ocean; Pacific Rim; Coleoptera; Hygrobiidae
Año:2017
Volumen:40
Número:4
Página de inicio:500
Página de fin:510
DOI: http://dx.doi.org/10.1111/ecog.02195
Título revista:Ecography
Título revista abreviado:Ecography
ISSN:09067590
CODEN:ECOGE
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_09067590_v40_n4_p500_Toussaint

Referencias:

  • Balke, M., Agabus (“Metronectes”) aubei Perris: habitat, morphological adaptations, systematics, evolution, and notes on the phanerofluicolous fauna (Coleoptera: Dytiscidae) (1997) Aquat. Insects, 19, pp. 75-90
  • Chen, X., Understanding the formation of ancient intertropical disjunct distributions using Asian and Neotropical hinged-teeth snakes (Sibynophis and Scaphiodontophis: Serpentes: Colubridae) (2013) Mol. Phylogenet. Evol, 66, pp. 254-261
  • Condamine, F.L., Fine-scale biogeographical and temporal diversification processes of peacock swallowtails (Papilio subgenus Achillides) in the Indo-Australian Archipelago (2013) Cladistics, 29, pp. 88-111
  • Condamine, F.L., Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace (2015) Sci. Rep, 5, p. 11860
  • Cummins, C.A., McInerney, J.O., A method for inferring the rate of evolution of homologous characters that can potentially improve phylogenetic inference, resolve deep divergence and correct systematic biases (2011) Syst. Biol, 60, pp. 833-844
  • Darwin, C., (1859) On the origins of species by means of natural selection, , Murray
  • de Bruyn, M., Paleo-drainage basin connectivity predicts evolutionary relationships across three southeast Asian biodiversity hotspots (2013) Syst. Biol, 62, pp. 398-410
  • de Bruyn, M., Borneo and Indochina are major evolutionary hotspots for southeast Asian biodiversity (2014) Syst. Biol, 63, pp. 879-901
  • de Queiroz, A., The resurrection of oceanic dispersal in historical biogeography (2005) Trends Ecol. Evol, 20, pp. 68-73
  • Drummond, A.J., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Mol. Biol. Evol, 29, pp. 1969-1973
  • Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acid. Res, 32, pp. 1792-1797
  • Engel, M.S., A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera) (2001) Bull. Am. Mus. Nat. Hist, 259, pp. 1-192
  • Espeland, M., Ancient Neotropical origin and recent recolonisation: phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea) (2015) Mol. Phylogenet. Evol, 93, pp. 296-306
  • Frandsen, P.B., Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates (2015) BMC Evol. Biol, 15, p. 13
  • Gibbons, A.D., The breakup of East Gondwana: assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model (2013) J. Geophys. Res, 118, pp. 808-822
  • Gómez, R.A., Damgaard, A.L., A rare diving beetle from Baltic amber: Hydrotrupes prometheus new species reveals former widespread distribution of the genus (Coleoptera, Dytiscidae) (2014) J. Paleontol, 88, pp. 814-822
  • Gregory-Wodzicki, K.M., Uplift history of the central and northern Andes: a review (2000) Geol. Soc. Am. Bull, 112, pp. 1091-1105
  • Hackett, S.J., A phylogenomic study of birds reveals their evolutionary history (2008) Science, 320, pp. 1763-1768
  • Hall, R., Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations (2002) J. Asian Earth Sci, 20, pp. 353-431
  • Hall, R., Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean (2012) Tectonophysics, 570, pp. 1-41
  • Hall, R., Sundaland and Wallacea: geology, plate tectonics and palaeogeography (2012) Biotic evolution and environmental change in southeast Asia, pp. 32-78. , – In, Gower, D. J., (eds),, Cambridge Univ. Press
  • Hall, R., The palaeogeography of Sundaland and Wallacea since the Late Jurassic (2013) J. Limnol, 72, pp. 1-17
  • Halling, R.E., Pacific boletes: implications for biogeographic relationships (2008) Mycol. Res, 112, pp. 437-447
  • Heaney, L.R., Is a new paradigm emerging for oceanic island biogeography? – J (2007) Biogeogr, 34, pp. 753-757
  • Huelsenbeck, J.P., Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo (2004) Mol. Biol. Evol, 21, pp. 1123-1133
  • Kosmowska-Ceranowicz, B., Müller, C., Lithology and calcareous nannoplancton in amber-bearing Tertiary sediments from boreholes Chlapowo (northern Poland) (1985) Bull. Pol. Acad. Sci. Earth Sci, 33, pp. 119-128
  • Landis, M.J., Bayesian analysis of biogeography when the number of areas is large (2013) Syst. Biol, 62, pp. 789-804
  • Lanfear, R., PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses (2012) Mol. Biol. Evol, 29, pp. 1695-1701
  • Lomolino, M.V., Island biogeography theory: reticulations and reintegration of “a biogeography of the species (2010) The theory of island biogeography revisited, pp. 13-51. , – In, Losos, J. B., Ricklefs, R. E., (eds),, Princeton Univ. Press
  • Matzke, N.J., Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing (2013) Front. Biogeogr, 5, pp. 242-248
  • Matzke, N.J., Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades (2014) Syst. Biol, 63, pp. 951-970
  • Mayr, E., Diamond, J.M., (2001) The birds of northern Melanesia, , Oxford Univ. Press
  • Miller, K.B., Bergsten, J., The phylogeny and classification of predaceous diving beetles (2014) Ecology, systematics, and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae), pp. 49-172. , – In, Yee, D. A., (ed.),, Springer
  • Miller, K.G., The Phanerozoic record of global sea-level change (2005) Science, 312, pp. 1293-1298
  • Minh, B.Q., Ultrafast approximation for phylogenetic bootstrap (2013) Mol. Biol. Evol, 30, pp. 1188-1195
  • Morrone, J.J., Crisci, J.V., Historical biogeography: introduction to methods (1995) Annu. Rev. Ecol. Syst, 26, pp. 373-401
  • Müller, C.J., ‘After Africa’: the evolutionary history and systematics of the genus Charaxes Ochsenheimer (Lepidoptera: Nymphalidae) in the Indo-Pacific region (2010) Biol. J. Linn. Soc, 100, pp. 457-481
  • Nelson, G., Platnick, N.I., (1981) Systematics and biogeography: cladistics and vicariance, , Columbia Univ. Press
  • Nguyen, L.T., IQ-tree: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies (2015) Mol. Biol. Evol, 32, pp. 268-274
  • Plummer, M., CODA: convergence diagnosis and output analysis for MCMC (2006) R News, 6, pp. 7-11
  • Ponomarenko, A.G., New Mesozoic water beetles (Insecta, Coleoptera) from Asia (1987) Paleontol. Zh, 2, pp. 83-97
  • Rabosky, D.L., Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees (2014) PLoS One, 9
  • Rabosky, D.L., BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees (2014) Methods Ecol. Evol, 5, pp. 701-707
  • Ree, R.H., Smith, S.A., Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis (2008) Syst. Biol, 57, pp. 4-14
  • Ree, R.H., A likelihood framework for inferring the evolution of geographic range on phylogenetic trees (2005) Evolution, 59, pp. 2299-2311
  • Ritzkowski, S., K-ar-Altersbestimmungen der bernsteinführenden Sedimente des Samlandes (Paläogen, Bezirk Kaliningrad) (1997) Metalla, 66, pp. 19-23
  • Ronquist, F., Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography (1997) Syst. Biol, 46, pp. 195-203
  • Ronquist, F., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space (2012) Syst. Biol, 61, pp. 539-542
  • Rosen, D.E., Vicariant patterns and historical explanation in biogeography (1978) Syst Zool, 27, pp. 159-188
  • Sharma, P.P., Giribet, G., Out of the Neotropics: Late Cretaceous colonization of Australasia by American arthropods (2012) Proc. R. Soc. B, 279, pp. 3501-3509
  • Smith, A.B., Peterson, K.J., Dating the time of origin of major clades: molecular clocks and the fossil record (2002) Annu. Rev. Earth Planet. Sci, 30, pp. 65-88
  • Stadler, T., Inferring speciation and extinction processes from extant species data (2011) Proc. Natl Acad. Sci. USA, 108, pp. 16145-16146
  • Tamura, K., MEGA6: molecular evolutionary genetics analysis version 6.0 (2013) Mol. Biol. Evol, 30, pp. 2725-2729
  • Tänzler, R., Multiple transgressions of Wallace's Line explain diversity of flightless Trigonopterus weevils on Bali (2014) Proc. R. Soc. B, 281, p. 20132528
  • Tänzler, R., Macroevolution of hyperdiverse flightless beetles reflects the complex geological history of the Sunda Arc (2016) Sci. Rep, 6, p. 18793
  • Toussaint, E.F.A., Balke, M., Historical biogeography of Polyura butterflies in the oriental Palaeotropics: trans-archipelagic routes and South Pacific island hopping (2016) J. Biogeogr, p. press. , In
  • Toussaint, E.F.A., The towering orogeny of New Guinea as a trigger for arthropod megadiversity (2014) Nat. Comm, 5, p. 5001
  • Toussaint, E.F.A., Unveiling the diversification dynamics of Australasian predaceous diving beetles in the Cenozoic (2015) Syst. Biol, 64, pp. 3-24
  • Toussaint, E.F.A., Biogeography of Australasian flightless weevils (Curculionidae, Celeuthetini) suggests permeability of Lydekker's and Wallace's Lines (2015) Zool. Scr, 44, pp. 632-644
  • Toussaint, E.F.A., Mosaic patterns of diversification dynamics following the colonization of Melanesian islands (2015) Sci. Rep, 5, p. 16016
  • Townsend, T.M., Intercontinental dispersal by a microendemic burrowing reptile (Dibamidae) (2011) Proc. R. Soc. B, 278, pp. 2568-2574
  • Van Damme, K., Sinev, A.Y., Tropical Amphi-Pacific disjunctions in the Cladocera (Crustacea: Branchiopoda) (2013) J. Limnol, 72, p. 11
  • Voris, H.K., Maps of Pleistocene sea levels in southeast Asia: shorelines, river systems and time durations (2000) J. Biogeogr, 27, pp. 1153-1167
  • Wallace, A.R., (1876) The geographical distribution of animals, , Macmillan
  • Wegener, A., Die Entstehung der Kontinente (1912) Geol. Rundschau, 3, pp. 276-292
  • Wei, R., Eurasian origin, boreotropical migration and transoceanic dispersal in the pantropical fern genus Diplazium (Athyriaceae) (2015) J. Biogeogr, 42, pp. 1809-1819
  • Wickham, H.F., (1913) Fossil Coleoptera from Florissant in the United States National Museum, , US Government Printing Office
  • Wiley, E.O., Phylogenetic systematics and vicariance biogeography (1988) Syst. Zool, 37, pp. 271-290
  • Yu, Y., S-DIVA (statistical dispersal-vicariance analysis): a tool for inferring biogeographic histories (2010) Mol. Phylogenet. Evol, 56, pp. 848-850

Citas:

---------- APA ----------
Toussaint, E.F.A., Hendrich, L., Hájek, J., Michat, M.C., Panjaitan, R., Short, A.E.Z. & Balke, M. (2017) . Evolution of Pacific Rim diving beetles sheds light on Amphi-Pacific biogeography. Ecography, 40(4), 500-510.
http://dx.doi.org/10.1111/ecog.02195
---------- CHICAGO ----------
Toussaint, E.F.A., Hendrich, L., Hájek, J., Michat, M.C., Panjaitan, R., Short, A.E.Z., et al. "Evolution of Pacific Rim diving beetles sheds light on Amphi-Pacific biogeography" . Ecography 40, no. 4 (2017) : 500-510.
http://dx.doi.org/10.1111/ecog.02195
---------- MLA ----------
Toussaint, E.F.A., Hendrich, L., Hájek, J., Michat, M.C., Panjaitan, R., Short, A.E.Z., et al. "Evolution of Pacific Rim diving beetles sheds light on Amphi-Pacific biogeography" . Ecography, vol. 40, no. 4, 2017, pp. 500-510.
http://dx.doi.org/10.1111/ecog.02195
---------- VANCOUVER ----------
Toussaint, E.F.A., Hendrich, L., Hájek, J., Michat, M.C., Panjaitan, R., Short, A.E.Z., et al. Evolution of Pacific Rim diving beetles sheds light on Amphi-Pacific biogeography. Ecography. 2017;40(4):500-510.
http://dx.doi.org/10.1111/ecog.02195