Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Conduction mechanisms in polycrystalline SnO2 thick sensing films were investigated by means of DC electrical resistance during heating-cooling cycles. Samples were maintained at relatively high temperatures in H2 or O2 ambient atmospheres before performing electrical measurements under vacuum or before performing XPS measurements in order to determine band bending. Results suggest that intergrains present Schottky barriers that are responsible for the observed conductivities regardless of gas pre-treatment. Oxygen diffusion modulates barrier widths affecting conductivity through tunneling transport. The electrical response to subsequent exposure to an oxygen atmosphere is consistent with our interpretation. © 2013 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Conductivity in SnO2 polycrystalline thick film gas sensors: Tunneling electron transport and oxygen diffusion
Autor:Aldao, C.M.; Schipani, F.; Ponce, M.A.; Joanni, E.; Williams, F.J.
Filiación:Institute of Materials Science and Technology (INTEMA), University of Mar Del Plata and National Research Council (CONICET), Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina
CTI Renato Archer, Rodovia D. Pedro I (SP - 65) Km 143.6, CEP: 13069-901 Campinas, SP, Brazil
Departamento de Quimica Inorganica, Analitica y Quimica Fisica and INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. 2, piso 3, C1428EHA Buenos Aires, Argentina
Idioma: Inglés
Palabras clave:Electron tunneling; Oxygen diffusion; SnO2; Conduction Mechanism; Electrical measurement; Electrical response; Electron transport; Heating-cooling cycle; Oxygen diffusion; SnO2; Tunneling transports; Electron tunneling; Schottky barrier diodes; Thick films; Diffusion in gases
Año:2014
Volumen:193
Página de inicio:428
Página de fin:433
DOI: http://dx.doi.org/10.1016/j.snb.2013.11.114
Título revista:Sensors and Actuators, B: Chemical
Título revista abreviado:Sens Actuators, B Chem
ISSN:09254005
CODEN:SABCE
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_09254005_v193_n_p428_Aldao

Referencias:

  • Madou, M.J., Morrison, R., (1989) Chemical Sensing with Solid State Devices, , John Wiley & Sons, Inc New York, NY
  • Yamazoe, N., Toward innovations of gas sensor technology (2005) Sensors and Actuators B: Chemical, 108, pp. 2-14
  • Barsan, N., Koziej, D., Weimar, U., Metal oxide-based gas sensor research: How to? (2007) Sensors and Actuators, B: Chemical, 121 (1), pp. 18-35. , DOI 10.1016/j.snb.2006.09.047, PII S0925400506006204
  • Gopel, W., Schierbaum, K., SnO2 sensors: Currents status and future prospect (1995) Sensors and Actuators B: Chemical, 26, pp. 1-12
  • Malagù, C., Carotta, M.C., Fissan, H., Guidi, V., Kennedy, M.K., Kruis, F.E., Martinelli, G., Wilks, S.P., Surface state density decrease in nanostructured polycrystalline SnO 2: Modelling and experimental evidence (2004) Sensors and Actuators B: Chemical, 100, pp. 283-286
  • Barsan, N., Weimar, U., Conduction model of metal oxide gas sensors (2001) Journal of Electroceramics, 7 (3), pp. 143-167. , DOI 10.1023/A:1014405811371
  • Fleig, J., The grain boundary impedance of random microstructures: Numerical simulations and implications for the analysis of experimental data (2002) Solid State Ionics, 150 (1-2), pp. 181-193. , DOI 10.1016/S0167-2738(02)00274-6, PII S0167273802002746
  • Barsan, N., Hübner, M., Weimar, U., Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds (2011) Sensors and Actuators B: Chemical, 157, pp. 510-517
  • Schipani, F., Aldao, C.M., Ponce, M.A., Schottky barriers measurements through Arrhenius plots in gas sensors based on semiconductor films (2012) AIP Advances, 2, pp. 2158-3226
  • Castro, M.S., Aldao, C.M., Prebreakdown conduction in zinc oxide varistors: Thermionic or tunnel currents and one-step or two-step conduction processes (1993) Applied Physics Letters, 63, pp. 1077-1079
  • Crowell, C.R., Rideout, V.L., Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers (1969) Solid-State Electronics, 12, pp. 89-105
  • Batzill, M., Diebold, U., The surface and materials science of tin oxide (2005) Progress in Surface Science, 79 (2-4), pp. 47-154. , DOI 10.1016/j.progsurf.2005.09.002, PII S007968160500050X
  • Kamp, B., Merkle, R., Maier, J., Chemical diffusion of oxygen in tin dioxide (2001) Sensors and Actuators, B: Chemical, 77 (1-2), pp. 534-542. , DOI 10.1016/S0925-4005(01)00694-3, PII S0925400501006943
  • Blaustein, G., Castro, M.S., Aldao, C.M., Influence of frozen distributions of oxygen vacancies on tin oxide conductance (1999) Sensors and Actuators B: Chemical, 55, pp. 33-37
  • Ponce, M.A., Castro, M.S., Aldao, C.M., Influence of oxygen adsorption and diffusion on the overlapping of intergranular potential barriers in SnO2 thick-films (2004) Materials Science and Engineering B, 111, pp. 14-19
  • Aldao, C.M., Mirabella, D.A., Ponce, M.A., Giberti, A., Malagù, C., Role of intra-grain oxygen diffusion in polycrystalline tin oxide conductivity (2011) Journal of Applied Physics, 109, p. 063723
  • Malagù, C., Giberti, A., Morandi, S., Aldao, C.M., Electrical and spectroscopic analysis in nanostructured SnO2: Long term resistance drift is due to in-diffusion (2011) Journal of Applied Physics, 110, p. 093711
  • Maffes, T.G.G., Owen, G.T., Penny, M.W., Starke, T.K.H., Clark, S.A., Ferkel, H., Wilks, S.P., Nano-crystalline SnO2 gas sensor response to O2 and CH4 at elevated temperature investigated by XPS (2002) Surface Science, 520 (1-2), pp. 29-34. , DOI 10.1016/S0039-6028(02)02301-4, PII S0039602802023014
  • Kwoka, M., Ottaviano, L., Szuber, J., Photoemission studies of the surface electronic properties of L-CVD SnO2 ultra thin films (2012) Applied Surface Science, 258, pp. 8425-8429
  • Kajijawa, Y., Conduction model covering non-degenerate through degenerate polycrystalline semiconductors with non-uniform grain-boundary potential heights based on an energy filtering model (2012) Journal of Applied Physics, 112, p. 123713
  • Belmont, C., Gtrault, H.H., Coplanar interdigitated band electrodes for synthesis Part I: Ohmic loss evaluation (1994) Journal of Applied Electrochemistry, 24, pp. 475-480
  • Izydorczyk, W., Numerical analysis of an influence of oxygen adsorption at a SnO 2 surface on the electronic parameters of the induced depletion layer (2011) Physica Status Solidi B Basic Solid State Physics, 248, pp. 694-699

Citas:

---------- APA ----------
Aldao, C.M., Schipani, F., Ponce, M.A., Joanni, E. & Williams, F.J. (2014) . Conductivity in SnO2 polycrystalline thick film gas sensors: Tunneling electron transport and oxygen diffusion. Sensors and Actuators, B: Chemical, 193, 428-433.
http://dx.doi.org/10.1016/j.snb.2013.11.114
---------- CHICAGO ----------
Aldao, C.M., Schipani, F., Ponce, M.A., Joanni, E., Williams, F.J. "Conductivity in SnO2 polycrystalline thick film gas sensors: Tunneling electron transport and oxygen diffusion" . Sensors and Actuators, B: Chemical 193 (2014) : 428-433.
http://dx.doi.org/10.1016/j.snb.2013.11.114
---------- MLA ----------
Aldao, C.M., Schipani, F., Ponce, M.A., Joanni, E., Williams, F.J. "Conductivity in SnO2 polycrystalline thick film gas sensors: Tunneling electron transport and oxygen diffusion" . Sensors and Actuators, B: Chemical, vol. 193, 2014, pp. 428-433.
http://dx.doi.org/10.1016/j.snb.2013.11.114
---------- VANCOUVER ----------
Aldao, C.M., Schipani, F., Ponce, M.A., Joanni, E., Williams, F.J. Conductivity in SnO2 polycrystalline thick film gas sensors: Tunneling electron transport and oxygen diffusion. Sens Actuators, B Chem. 2014;193:428-433.
http://dx.doi.org/10.1016/j.snb.2013.11.114