Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Buckypapers based on different types of carbon nanotubes with and without the addition of four model drugs, two of basic nature (clonidine hydrochloride, selegiline hydrochloride) and the others of acidic character (flurbiprofen, ketorolac tromethamine) were prepared and characterized. The influence of the conditions employed in the preparation of the buckypapers (dispersion time and solvents used in the preparation, as well as the type of carbon nanotubes used and the characteristics of the drug involved) on their conductivity was especially examined. The in vitro performance of the drug loaded buckypapers as passive and active transdermal drug release systems, the latter being modulated by means of the application of electric voltages, was studied. Passive drug loaded buckypapers presented characteristic release profiles, also depending on the drug used, which indicate differences in the drug-carbon nanotubes non-covalent interactions. Application of electrical biases of appropriate polarities enabled the modulation of the drug release profiles in any desired direction. Different mathematical models were fitted to passive and electromodulated experimental release data for the four model drugs. Among these models, the most appropriate for data description was a two-compartment pseudo-second-order one. © 2017 Elsevier B.V.


Documento: Artículo
Título:Development and in vitro evaluation of potential electromodulated transdermal drug delivery systems based on carbon nanotube buckypapers
Autor:Schwengber, A.; Prado, H.J.; Bonelli, P.R.; Cukierman, A.L.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias-PINMATE, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, C1033AAJ, Argentina
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica II, Junín 956, Buenos Aires, C1113AAD, Argentina
Palabras clave:Buckypapers; Carbon nanotubes; Electrical conductivity; Transdermal drug delivery; Drug products; Nanotubes; Yarn; Bucky paper; Electrical conductivity; In-vitro evaluation; Ketorolac tromethamine; Non-covalent interaction; Pseudo second order; Transdermal drug delivery; Transdermal drug delivery systems; Carbon nanotubes; carbon nanotube; flurbiprofen; cutaneous drug administration; drug delivery system; Administration, Cutaneous; Drug Delivery Systems; Flurbiprofen; Nanotubes, Carbon
Página de inicio:431
Página de fin:438
Título revista:Materials Science and Engineering C
Título revista abreviado:Mater. Sci. Eng. C
CAS:flurbiprofen, 5104-49-4; Flurbiprofen; Nanotubes, Carbon


  • Wong, B.S., Yoong, S.L., Jagusiak, A., Panczyk, T., Ho, H.K., Ang, W.H., Pastorin, G., Carbon nanotubes for delivery of small molecule drugs (2013) Adv. Drug Deliv. Rev., 65, pp. 1964-2015
  • Ilbasmis Tamer, S., Degim, I.T., A feasible way to use carbon nanotubes to deliver drug molecules: transdermal application (2012) Expert Opin. Drug Deliv., 9, pp. 991-999
  • Bhunia, T., Giri, A., Nasim, T., Chattopadhyay, D., Bandyopadhyay, A., A transdermal diltiazem hydrochloride delivery device using multi-walled carbon nanotube/poly(vinyl alcohol) composites (2013) Carbon, 52, pp. 305-315
  • Garland, M.J., Singh, T.R.R., Woolfson, A.D., Donnelly, R.F., Electrically enhanced solute permeation across poly(ethyleneglycol)–crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: effect of hydrogel crosslink density and ionic conductivity (2011) Int. J. Pharm., 406, pp. 91-98
  • Giri, A., Bhowmick, M., Pal, S., Bandyopadhyay, A., Polymer hydrogel from carboxymethyl guar gum and carbon nanotube for sustained trans-dermal release of diclofenac sodium (2011) Int. J. Biol. Macromol., 49, pp. 885-893
  • Naficy, S., Razal, J.M., Spinks, G.M., Wallace, G.G., Modulated release of dexamethasone from chitosan–carbon nanotube films (2009) Sensor. Actuator. Phys., 155, pp. 120-124
  • Yun, J., Im, J.S., Lee, Y.S., Kim, H.I., Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers (2011) Eur. Polym. J., 47, pp. 1893-1902
  • Degim, I.T., Burgess, D.J., Papadimitrakopoulos, F., Carbon nanotubes for transdermal drug delivery (2010) J. Microencapsul., 27, pp. 669-681
  • Olivi, M., Zanni, E., De Bellis, G., Talora, C., Sarto, M.S., Palleschi, C., Flahaut, E., Fiorito, S., Inhibition of microbial growth by carbon nanotube networks (2013) Nano, 5, pp. 9023-9029
  • Deo, S.K., Moschou, E.A., Peteu, S.F., Bachas, L.G., Daunert, S., Eisenhardt, P.E., Madou, M.J., Responsive drug delivery systems (2003) Anal. Chem., 75, pp. 206A-213A
  • Tng, D.J.H., Hu, R., Song, P., Roy, I., Yong, K.-T., Approaches and challenges of engineering implantable microelectromechanical systems (MEMS) drug delivery systems for in vitro and in vivo applications (2012) Micromachines, 3, pp. 615-631
  • Boge, J., Sweetman, L.J., Inhet Panhuis, M., Ralph, S.F., The effect of preparation conditions and biopolymer dispersants on the properties of SWNT buckypapers (2009) J. Mater. Chem., 19, pp. 9131-9140
  • Li, J., Guan, Y., Fu, K., Su, Y., Bao, L., Wu, F., Applications of carbon nanotubes and graphene in the energy storage batteries (2014) Prog. Chem., 26, pp. 1233-1243
  • Wu, Y., Wang, J., Jiang, K., Fan, S., Applications of carbon nanotubes in high performance lithium ion batteries (2014) Front. Phys., 9, pp. 351-369
  • Wujcik, E.K., Monty, C.N., Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine (2013) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5, pp. 233-249
  • Chen, X., Kim, D., Hong, S., The carbon nanotube-based nanobiosensor: a key component for ubiquitous real-time bioscreening system? (2014) Nanomedicine, 9, pp. 565-567
  • Franklin, A.D., Luisier, M., Han, S.J., Tulevski, G., Breslin, C.M., Gignac, L., Lundstrom, M.S., Haensch, W., Sub-10 nm carbon nanotube transistor (2012) Nano Lett., 12, pp. 758-762
  • Wang, C., Takei, K., Takahashi, T., Javey, A., Carbon nanotube electronics-moving forward (2013) Chem. Soc. Rev., 42, pp. 2592-2609
  • Park, S., Vosguerichian, M., Bao, Z., A review of fabrication and applications of carbon nanotube film-based flexible electronics (2013) Nano, 5, pp. 1727-1752
  • Elhissi, A., Ahmed, W., Dhanak, V.R., Subramani, K., Chapter 20: carbon nanotubes in cancer therapy and drug delivery (2012) Emerging Nanotechnologies in Dentistry, pp. 347-363. , K. Subramani W. Ahmed Elsevier/William Andrew Waltham
  • Schwengber, A., Prado, H.J., Zilli, D.A., Bonelli, P.R., Cukierman, A.L., Carbon nanotubes buckypapers for potential transdermal drug delivery (2015) Mater. Sci. Eng. C, 57, pp. 7-13
  • Aldalbahi, A., Inhet Panhuis, M., Electrical and mechanical characteristics of buckypapers and evaporative cast films prepared using single and multi-walled carbon nanotubes and the biopolymer carrageenan (2012) Carbon, 50, pp. 1197-1208
  • Zilli, D., Bonelli, P.R., Cukierman, A.L., Room temperature hydrogen gas sensor nanocomposite based on Pd-decorated multi-walled carbon nanotubes thin films (2011) Sensor. Actuator. B Chem., 157, pp. 169-176
  • Banga, A.K., Electrically Assisted Transdermal and Topical Drug Delivery (1998), first ed. Taylor & Francis Ltd. London; Hecht, D., Hu, L., Grüner, G., Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks (2006) Appl. Phys. Lett., 89, p. 133112
  • Hu, L., Hecht, D.S., Grüner, G., Carbon nanotube thin films: fabrication, properties, and applications (2010) Chem. Rev., 110, pp. 5790-5844
  • Tan, J.M., Foo, J.B., Fakurazi, S., Hussein, M.Z., Release behaviour and toxicity evaluation of levodopa from carboxylated single-walled carbon nanotubes (2015) Beilstein J. Nanotechnol., 6, pp. 243-253
  • Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis, C.C., Chemical oxidation of multiwalled carbon nanotubes (2008) Carbon, 46, pp. 833-840
  • Weydemeyer, E.J., Sawdon, A.J., Peng, C.A., Controlled cutting and hydroxyl functionalization of carbon nanotubes through autoclaving and sonication in hydrogen peroxide (2015) Chem. Commun., 51, pp. 5939-5942
  • Kharissova, O.V., Kharisov, B.I., de Casas Ortiz, E.G., Dispersion of carbon nanotubes in water and non-aqueous solvents (2013) RSC Adv., 3, pp. 24812-24852
  • Kim, D.H., Yun, Y.S., Jin, H.J., Difference of dispersion behavior between graphene oxide and oxidized carbon nanotubes in polar organic solvents (2012) Curr. Appl. Phys., 12, pp. 637-642
  • Vaisman, L., Wagner, H.D., Marom, G., The role of surfactants in dispersion of carbon nanotubes (2006) Adv. Colloid Interf. Sci., 128, pp. 37-46
  • Atashbar, M.Z., Bejcek, B., Singamaneni, S., Santucci, S., Carbon nanotube based biosensors, sensors, 2004 (2004) Proc. IEEE, pp. 1048-1051
  • Lawal, A.T., Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors (2016) Mater. Res. Bull., 73, pp. 308-350
  • da Silva, L.B., Fagan, S.B., Mota, R., Carboxylated carbon nanotubes under external electrical field: an ab initio investigation (2009) J. Phys. Chem. C, 113, pp. 8959-8963
  • Siepmann, J., Siepmann, F., Mathematical modeling of drug delivery (2008) Int. J. Pharm., 364, pp. 328-343
  • Zhang, R., Hummelgård, M., Lv, G., Olin, H., Real time monitoring of the drug release of rhodamine B on graphene oxide (2011) Carbon, 49, pp. 1126-1132
  • Robati, D., Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube (2013) J. Nanostruct. Chem., 3, pp. 1-6
  • Wang, Z., Zhao, J., Song, L., Mashayekhi, H., Chefetz, B., Xing, B., Adsorption and desorption of phenanthrene on carbon nanotubes in simulated gastrointestinal fluids (2011) Environ. Sci. Technol., 45, pp. 6018-6024
  • Gratieri, T., Kalia, Y.N., Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier (2013) Adv. Drug Deliv. Rev., 65, pp. 315-329
  • Pan, B., Liu, Y., Xiao, D., Wu, F., Wu, M., Zhang, D., Xing, B., Quantitative identification of dynamic and static quenching of ofloxacin by dissolved organic matter using temperature-dependent kinetic approach (2012) Environ. Pollut., 161, pp. 192-198


---------- APA ----------
Schwengber, A., Prado, H.J., Bonelli, P.R. & Cukierman, A.L. (2017) . Development and in vitro evaluation of potential electromodulated transdermal drug delivery systems based on carbon nanotube buckypapers. Materials Science and Engineering C, 76, 431-438.
---------- CHICAGO ----------
Schwengber, A., Prado, H.J., Bonelli, P.R., Cukierman, A.L. "Development and in vitro evaluation of potential electromodulated transdermal drug delivery systems based on carbon nanotube buckypapers" . Materials Science and Engineering C 76 (2017) : 431-438.
---------- MLA ----------
Schwengber, A., Prado, H.J., Bonelli, P.R., Cukierman, A.L. "Development and in vitro evaluation of potential electromodulated transdermal drug delivery systems based on carbon nanotube buckypapers" . Materials Science and Engineering C, vol. 76, 2017, pp. 431-438.
---------- VANCOUVER ----------
Schwengber, A., Prado, H.J., Bonelli, P.R., Cukierman, A.L. Development and in vitro evaluation of potential electromodulated transdermal drug delivery systems based on carbon nanotube buckypapers. Mater. Sci. Eng. C. 2017;76:431-438.