Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this study, we use convection-permitting high resolution (3 km) simulations to quantify and analyse the water budget, precipitation efficiency and water sources of 100 intense Mediterranean cyclones. To this end, we calculate the water content, advection and microphysical processes of water vapour and rain water by implementing new diagnostics to the Weather Research and Forecasting (WRF) model. The 100 intense cyclones have been randomly selected from a 500 intense cyclones dataset, identified and tracked in an 11-year time period in part I of this study. Results are presented in a composite approach showing that most rainfall takes place to the north-east side of the cyclones, close to their centre. Rainfall location is concomitant to the area of horizontal moisture flux convergence and is quasi-equal to the amount of water vapour loss due to microphysical processes. Similar results were found regardless if cyclones produce high or low rainfall amounts. Vertical profiles of the water budget terms revealed deeper clouds for the cyclones producing high rainfall, consistent with higher values of vertical advection of both water vapour and rain water. Finally, cyclones were analysed with respect to their precipitation efficiency, i.e. the ratio between the rainwater produced in an atmospheric column and the consequent rainfall, and showed that cyclones tend to be more efficient when their rainfall production takes place over land. Therefore, there is a complex relation between water vapour advection, precipitation efficiency and rainfall which is discussed through the comparison of two tropical-like cyclones with two cyclones that produced low rainfall amounts. Finally, our analysis is complemented by applying a Lagrangian approach to all 100 cyclones in order to quantify the water vapour source regions that contribute to the cyclones’ rainfall due to local surface evaporation. Results showed that these regions are located over both the Atlantic and the Mediterranean, however we show that cyclones producing high rainfall are related with higher water transport from both the subtropical Atlantic and the Mediterranean Sea. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.

Registro:

Documento: Artículo
Título:Heavy rainfall in Mediterranean cyclones, Part II: Water budget, precipitation efficiency and remote water sources
Autor:Flaounas, E.; Fita, L.; Lagouvardos, K.; Kotroni, V.
Filiación:National observatory of Athens, Athens, Greece
Centro de Investigaciones del Mar y la Atmósfera (CIMA), CONICET-UBA, CNRS UMI-IFAECI, Buenos Aires, Argentina
Año:2019
DOI: http://dx.doi.org/10.1007/s00382-019-04639-x
Título revista:Climate Dynamics
Título revista abreviado:Clim. Dyn.
ISSN:09307575
Registro:http://digital.bl.fcen.uba.ar/collection/paper/document/paper_09307575_v_n_p_Flaounas

Referencias:

  • Braun, S.A., High-resolution simulation of Hurricane Bonnie (1998). Part II: Water Budget (2006) J Atmos Sci, 63, pp. 43-64
  • Carrió, D.S., Homar, V., Jansa, A., Romero, R., Picornell, M.A., Tropicalization process of the 7 November 2014 Mediterranean cyclone: numerical sensitivity study (2017) Atmos Res, 197, pp. 300-312
  • Chazette, P., Flamant, C., Raut, J., Totems, J., Shang, X., Tropical moisture enriched storm tracks over the Mediterranean and their link with intense rainfall in the Cevennes–Vivarais area during HyMeX (2016) QJR Meteorol Soc, 142, pp. 320-334
  • Davolio, S., Miglietta, M.M., Moscatello, A., Pacifico, F., Buzzi, A., Rotunno, R., Numerical forecast and analysis of a tropical-like cyclone in the Ionian Sea (2009) Nat Hazards Earth Syst Sci, 9 (2), pp. 551-562
  • Dee, D., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Vitart, F., The era-interim reanalysis: configuration and performance of the data assimilation system (2011) QJRMS, 137, pp. 553-597
  • Dudhia, J., Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model (1989) J Atmos Sci, 46, pp. 3077-3107
  • Duffourg, F., Ducrocq, V., Assessment of the water supply to Mediterranean heavy precipitation: a method based on finely designed water budgets (2013) Atmos Sci Lett, 14 (3), pp. 133-138
  • Fita, L., Flaounas, E., Medicanes as subtropical cyclones: the December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget (2018) QJR Meteorol Soc
  • Flaounas, E., Raveh-Rubin, S., Wernli, H., Drobinski, P., Bastin, S., The dynamical structure of intense Mediterranean cyclones (2015) Clim Dyn, 44 (9-10), pp. 2411-2427
  • Flaounas, E., Di Luca, A., Drobinski, P., Mailler, S., Arsouze, T., Bastin, S., Beranger, K., Lebeaupin Brossier, C., Cyclone contribution to the Mediterranean Sea water budget (2016) Clim Dyn, 44, pp. 1-15
  • Flaounas, E., Kotroni, V., Lagouvardos, K., Gray, S.L., Rysman, J.F., Claud, C., Heavy rainfall in Mediterranean cyclones. Part I: contribution of deep convection and warm conveyor belt (2017) Clim Dyn, 27, pp. 1-5
  • Fritz, C., Wang, Z., Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation (2014) J Atmos Sci, 71, pp. 4321-4332
  • Gallus, W.A., Jr., Pfeifer, M., Intercomparison of simulations using 5 WRF microphysical schemes with dual-polarization data for a German squall line (2008) Adv Geosci, 16, p. 109
  • Gao, S., Li, X., Can water vapour process data be used to estimate precipitation efficiency? (2011) QJR Meteorol Soc, 137, pp. 969-978
  • Giannaros, T., Kotroni, V., Lagouvardos, K., Predicting Lightning activity in greece with the weather research and forecasting (WRF) Model (2015) Atmos Res, 156, pp. 1-13
  • Hong, S.Y., A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon (2010) Q J R Meteorol Soc, 136 (651), pp. 1481-1496
  • Hong, S.Y., Juang, H.M.H., Zhao, Q., Implementation of prognostic cloud scheme for a regional spectral model (1998) Mon Weather Rev, 126, p. 26212639
  • Hong, S.Y., Dudhia, J., Chen, S.H., A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation (2004) Mon Weather Rev, 132, pp. 103-120
  • Hong, S.Y., Noh, Y., Dudhia, J., A new vertical diffusion package with an explicit treatment of entrainment processes (2006) Mon Weather Rev, 134 (9), pp. 2318-2341
  • Huang, H., Yang, M., Sui, C., water budget and precipitation efficiency of Typhoon Morakot (2009) (2014) J Atmos Sci, 71, pp. 112-129
  • Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Stocker, E.F., The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales (2007) J Hydrometeorol, 8, pp. 38-55
  • Jansa, A., Genoves, A., Picornell, M., Campins, J., Riosalido, R., Carretero, O., Western Mediterranean cyclones and heavy rain. Part 2: Statistical approach (2001) Meteorol Appl, 8 (1), pp. 43-56
  • Jansa, A., Alpert, P., Arbogast, P., Buzzi, A., Ivancan-Picek, B., Kotroni, V., Llasat, M.C., Speranza, A., MEDEX: a general overview (2014) Nat Hazards Earth Syst Sci, 14, pp. 1965-1984
  • Kain, J.S., The Kain–Fritsch convective parameterization: an update (2004) J Appl Meteorol, 43 (1), pp. 170-181
  • Katsanos, D., Lagouvardos, K., Kotroni, V., Huffmann, G.J., Statistical evaluation of MPA-RT high-resolution precipitation estimates from satellite platforms over the Central and Eastern Mediterranean (2004) Geophys Res Lett, 31, p. L06116
  • Kotroni, V., Lagouvardos, K., Defer, E., Dietrich, S., Porcù, F., Medaglia, C.M., Demirtas, M., The Antalya 5 December 2002 storm: observations and model analysis (2005) J Appl Meteorol, 45, pp. 576-590
  • Michaelides, S., Karacostas, T., Sánchez, J.L., Retalis, A., Pytharoulis, I., Homar, V., Romero, R., Nisantzi, A., Reviews and perspectives of high impact atmospheric processes in the Mediterranean (2018) Atmos Res, 208, pp. 4-44
  • Miglietta, M.M., Mastrangelo, D., Conte, D., Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea (2015) Atmos Res, 153, pp. 360-375
  • Miltenberger, A., Seifert, K.A., Joos, H., Wernli, H., A scaling relation for warm-phase orographic precipitation: a Lagrangian analysis for 2D mountains (2015) Q J R Meteorol Soc, 141, pp. 2185-2198
  • Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A., Radiative transfer for inhomogeneous atmosphere: Rrtm, a validated correlated-k model for the long wave (1997) J Geophys Res, 102 (D14), pp. 16-663-16-682
  • Pfahl, S., Wernli, H., Spatial coherency of extreme weather events in Germany and Switzerland (2012) Int J Climatol, 32, pp. 1863-1874
  • Raveh-Rubin, S., Flaounas, E., A dynamical link between deep Atlantic extratropical cyclones and intense Mediterranean cyclones (2017) Atmos Sci Lett, 18, pp. 215-221
  • Raveh-Rubin, S., Wernli, H., Large-scale wind and precipitation extremes in the Mediterranean: dynamical aspects of five selected cyclone events (2016) Q J R Meteorol Soc, 142, pp. 3097-3114
  • Romilly, T.G., Gebremichael, M., Evaluation of satellite rainfall estimates over Ethiopian river basins (2011) Hydrol Earth Syst Sci, 15 (5), p. 1505
  • Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Duda, D.M.B.M.G., Huang, X.Y., Wang, W., Powers, J.G., (2008) A description of the advanced research wrf version 3, , NCAR TECHNICAL NOTE 475: NCAR/TN475 + STR
  • Sodemann, H., Schwierz, C., Wernli, H., Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence (2008) J Geophys Res, 113, p. D03107
  • Sprenger, M., Wernli, H., The LAGRANTO Lagrangian analysis tool-version 2.0 (2015) Geosci Model Dev, 8 (8), pp. 2569-2586
  • Sui, C., Li, X., Yang, M.J., On the definition of precipitation efficiency (2007) J Atmos Sci, 64 (12), pp. 4506-4513
  • Wernli, H., Paulat, M., Hagen, M., Frei, C., SAL—a novel quality measure for the verification of quantitative precipitation forecasts (2008) Mon Wea Rev, 136, pp. 4470-4487
  • Wicker, L.J., Skamarock, W.C., Time splitting methods for elastic models using forward time schemes (2002) Mon Wea Rev, 130, pp. 2088-2097
  • Winschall, A., Pfahl, S., Sodemann, H., Wernli, H., Impact of North Atlantic evaporation hot spots on southern Alpine heavy precipitation events (2012) QJR Meteorol Soc, 138, pp. 1245-1258
  • Winschall, A., Sodemann, H., Pfahl, S., Wernli, H., How important is intensified evaporation for Mediterranean precipitation extremes? (2014) J Geophys Res Atmos, 119, pp. 5240-5256
  • Wu, D., Dong, X., Xi, B., Feng, Z., Kennedy, A., Mullendore, G., Gilmore, M., Tao, W.K., Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events (2013) J Geophys Res Atmos
  • Yang, M., Braun, S.A., Chen, D., Water budget of Typhoon Nari (2001) (2011) Mon Wea Rev, 139, pp. 3809-3828

Citas:

---------- APA ----------
Flaounas, E., Fita, L., Lagouvardos, K. & Kotroni, V. (2019) . Heavy rainfall in Mediterranean cyclones, Part II: Water budget, precipitation efficiency and remote water sources. Climate Dynamics.
http://dx.doi.org/10.1007/s00382-019-04639-x
---------- CHICAGO ----------
Flaounas, E., Fita, L., Lagouvardos, K., Kotroni, V. "Heavy rainfall in Mediterranean cyclones, Part II: Water budget, precipitation efficiency and remote water sources" . Climate Dynamics (2019).
http://dx.doi.org/10.1007/s00382-019-04639-x
---------- MLA ----------
Flaounas, E., Fita, L., Lagouvardos, K., Kotroni, V. "Heavy rainfall in Mediterranean cyclones, Part II: Water budget, precipitation efficiency and remote water sources" . Climate Dynamics, 2019.
http://dx.doi.org/10.1007/s00382-019-04639-x
---------- VANCOUVER ----------
Flaounas, E., Fita, L., Lagouvardos, K., Kotroni, V. Heavy rainfall in Mediterranean cyclones, Part II: Water budget, precipitation efficiency and remote water sources. Clim. Dyn. 2019.
http://dx.doi.org/10.1007/s00382-019-04639-x