Menéndez, C.G.; Giles, J.; Ruscica, R.; Zaninelli, P.; Coronato, T.; Falco, M.; Sörensson, A.; Fita, L.; Carril, A.; Li, L. "Temperature variability and soil–atmosphere interaction in South America simulated by two regional climate models" (2019) Climate Dynamics
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Interannual variability of surface air temperature over South America is investigated and, based on previous studies, thought to be partly the consequence of soil–atmosphere interaction. Annual and monthly averages of surface air temperature, evapotranspiration, heat fluxes, surface radiation and cloud cover, simulated by two regional climate models, RCA4 and LMDZ, were analyzed. To fully reveal the role of soil as a driver of temperature variability, simulations were performed with and without soil moisture-atmosphere coupling (Control and Uncoupled). Zones of large variance in air temperature and strong soil moisture-atmosphere coupling are found in parts of La Plata Basin and in eastern Brazil. The two models show different behaviors in terms of coupling magnitude and its geographical distribution, being the coupling strength higher in RCA4 and weaker in LMDZ. RCA4 also shows greater amplitude of the annual cycle of the monthly surface air temperature compared to LMDZ. In both regions and for both models, the Uncoupled experiment tends to be colder and exhibits smaller amplitude of the interannual variability and larger evaporative fraction than the Control does. It is evidenced that variability of the land surface affects, and is affected by, variability of the surface energy balance and that interannual temperature variability is partly driven by land–atmosphere interaction. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.


Documento: Artículo
Título:Temperature variability and soil–atmosphere interaction in South America simulated by two regional climate models
Autor:Menéndez, C.G.; Giles, J.; Ruscica, R.; Zaninelli, P.; Coronato, T.; Falco, M.; Sörensson, A.; Fita, L.; Carril, A.; Li, L.
Filiación:Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA), Buenos Aires, Argentina
Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos (UMI3351-IFAECI/CNRS-CONICET-UBA), Buenos Aires, Argentina
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Buenos Aires, La Plata, Argentina
Laboratoire de Météorologie Dynamique, CNRS, Paris, France
Palabras clave:Interannual climate variability; Land–atmosphere interaction; Regional climate modeling; South America; Surface air temperature
Título revista:Climate Dynamics
Título revista abreviado:Clim. Dyn.


  • Andreoli, R., Kayano, M., ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold pacific decadal oscillation regimes (2005) Int J Climatol, 25, pp. 2017-2030
  • Barreiro, M., Díaz, N., Land–atmosphere coupling in El Niño influence over South America (2011) Atmos Sci Lett, 12, pp. 351-355
  • Bechtold, P., Bazile, E., Guichard, F., Mascart, P., Richard, E., A mass-flux convection scheme for regional and global models (2001) Q J R Meteorol Soc, 127, pp. 869-886
  • Bedoya-Soto, J.M., Poveda, G., Sauchyn, D., New insights on land surface-atmosphere feedbacks over tropical South America at interannual timescales (2018) Water, 10, p. 1095
  • Berg, A., Lintner, B.R., Findell, K., Seneviratne, S.I., van den Hurk, B., Ducharne, A., Chéruy, F., Gentine, P., Interannual coupling between summertime surface temperature and precipitation over land: processes and implications for climate change (2015) J Clim, 28, pp. 1308-1328
  • Carril, A.F., Menéndez, C.G., Remedio, A.R.C., Performance of a multi-RCMensemble for South Eastern South America (2012) Clim Dyn, 39, pp. 2747-2768
  • Cazes-Boezio, G., Robertson, A.W., Mechoso, C.R., Seasonal dependence of ENSO teleconnections over South America and relationships with precipitation in Uruguay (2003) J Clim, 16, pp. 1159-1176
  • Chen, W., Jiang, Z., Li, L., Yiou, P., Simulation of regional climate change under the IPCC A2 scenario in southeast China (2011) Clim Dyn, 36, pp. 491-507
  • da Rocha, R.P., Cuadra, S.V., Reboita, M.S., Kruger, L.F., Ambrizzi, T., Krusche, N., Effects of RegCM3 parameterizations on simulated rainy season over South America (2012) Clim Res, 52, pp. 253-265
  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Vitart, J.-N., The ERA-Interim reanalysis: configuration and performance of the data assimilation system (2011) Q J R Meteorol Soc, 137, pp. 553-597
  • Emanuel, K.A., A scheme for representing cumulus convection in large-scale models (1991) J Atmos Sci, 48, pp. 2313-2329
  • Emanuel, K.A., A cumulus representation based on the episodic mixing model: The importance of mixing and microphysics in predicting humidity (1993) The representation of cumulus convection in numerical models. Meteorological Monographs, pp. 185-192. , Emanuel KA, Raymond DJ, (eds), American Meteorological Society, Boston, MA
  • Falco, M., Carril, A.F., Menéndez, C.G., Zaninelli, P., Li, L.Z.X., Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations (2018) Clim Dyn
  • Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., (2014) Climate change 2014: impacts, adaptation, and vulnerability: Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change, , Cambridge University Press, Cambridge
  • Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J., Present-day South American climate (2008) Paleogeogr Palaeoclimato lPalaeoecol
  • Guillevic, P., Koster, R.D., Suarez, M.J., Bounoua, L., Collatz, G.J., Los, S.O., Mahanama, S.P., Influence of the interannual variability of vegetation on the surface energy balance—a global sensitivity study (2002) J Hydrometeor, 3, pp. 617-629
  • Guo, Z., Dirmeyer, P.A., Interannual variability of land–atmosphere coupling strength (2013) J Hydrometeor, 14, pp. 1636-1646
  • Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., Updatedhigh-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset (2014) Int J Climatol, 34, pp. 623-642
  • Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., Lott, F., The LMDZ4 generalcirculation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection (2006) Clim Dyn, 27, pp. 787-813
  • Jones, C., Willen, U., Ullerstig, A., Hansson, U., The Rossby Centre regional atmospheric climate model part I: model climatology and performance for the present climate over Europe (2004) Ambio, 33 (4-5), pp. 199-210
  • Jung, M., Reichstein, M., Ciais, P., Seneviratne, S.I., Sheffield, J., Goulden, M.L., Bonan, G., Zhang, K., Recent decline in the global land evapotranspiration trend due to limited moisture supply (2010) Nature, 467 (7318), pp. 951-954
  • Kain, J.S., Fritsch, J.M., A one-dimensional entraining/detraining plume model and its application in convective parameterization (1990) J Atmos Sci, 47, pp. 2784-2802
  • Kain, J.S., Fritsch, J.M., Convective parameterizations for Mesoscale Models: The Kain–Fritsch scheme (1993) The Representation of Cumulus Convection in Numerical Models, 46, p. 246. , Emanuel KA, Raymond DJ, AMS Monograph
  • Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J.J., Fiorino, M., Potter, G.L., NCEP-DOE AMIP-II reanalysis (R-2) (2002) Bull Am Meteorol Soc, 83, pp. 1631-1643
  • Koster, R.D., Regions of strong coupling between soil moisture and precipitation (2004) Science, 305, pp. 1138-1140
  • Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Colin Prentice, I., A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system (2005) Global Biogeochem Cycles
  • Krzywinski, M., Altman, N., Visualizing samples with box plots (2014) Nat Methods, 11, pp. 119-120
  • Kupiainen, M., Jansson, C., Samuelsson, P., Jones, C., Willén, U., Hansson, U., Ullerstig, A., Döscher, R., Rossby Centre regional atmospheric model, RCA4 (2014) Rossby Center News Letter, Rossby Centre Regional Atmospheric Model, RCA4
  • Le Treut, H., Li, Z.X., Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties (1991) Clim Dyn, 5, pp. 175-187
  • Lenderink, G., van Ulden, A., van den Hurk, B., Summertime inter-annual temperature variability in an ensemble of regional model simulations: analysis of the surface energy budget (2007) Clim Change, 81, p. 233
  • Li, Z.X., Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994 (1999) J Clim, 12, pp. 986-1001
  • Llopart, M., da Rocha, R.P., Reboita, M., Sensitivity of simulated South America climate to the land surface schemes in RegCM4 (2017) Clim Dyn, 49, p. 3975
  • Menéndez, C.G., Zaninelli, P.G., Carril, A.F., Sánchez, E., Hydrological cycle, temperature, and land surface–atmosphere interaction in the La Plata Basin during summer: response to climate change (2016) Clim Res, 68, pp. 231-241
  • Nobre, P., Shukla, J., Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America (1996) J Clim, 9, pp. 2464-2479
  • Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T., Taira, R., The JRA-25 reanalysis (2007) J Meteorol Soc Jpn, 85, pp. 369-432
  • Peixoto, J.P., Oort, A.H., (1992) Physics of climate, , American Institute of Physics, New York
  • Poveda, G., Waylen, P., Pulwarty, R., Annual and inter-annual variability of present climate in northern South America and southern Mesoamerica (2006) Paleogeogr Palaeoclimato lPalaeoecol, 234 (1), pp. 3-27
  • Räisänen, P., Rummukainen, M., Räisänen, J., Modification of the HIRLAM radiation scheme for use in the Rossby Centre regional atmospheric climate model (2000) Reports Meteorology and Climatology, p. 49. , Department of Meteorology, University of Helsinki, Finland
  • Rasch, P.J., Kristjansson, J.E., A comparison of the CCM3 Model climate using diagnosed and predicted condensate parameterizations (1998) J Clim, 11, pp. 1587-1614
  • Ruscica, R.C., Sörensson, A.A., Menéndez, C.G., Pathways between soil moisture and precipitation in southeastern South America (2015) Atmos Sci Lett, 16, pp. 267-272
  • Ruscica, R.C., Menéndez, C.G., Sörensson, A.A., Land surface-atmosphere interaction in future South American climate using a multi-model ensemble (2016) Atmos Sci Lett, 17, pp. 141-147
  • Samuelsson, P., Jones, C.G., Willén, U., Ullerstig, A., The rossby centre regional climate model RCA3: model description and performance (2011) Tellus, 63A, pp. 4-23
  • Samuelsson, P., Gollvik, S., Jansson, C., Kupiainen, M., Kourzeneva, E., van De Berg, W.J., (2014) The surface processes of the Rossby Centre regional atmospheric climate model (RCA4), , Report in Meteorology 157, SMHI, SE-601 76 Norrköping, Sweden
  • Sass, B.H., Rontu, L., Savijärvi, H., Räisänen, P., (1994) HIRLAM-2 Radiationscheme: Documentation and tests, p. 43. , Hirlam technical report No 16, SMHI, SE-601 76 Norrköping, Sweden
  • Savijärvi, H., A fast radiation scheme for mesoscale model and short-range forecast models (1990) J Appl Met, 29, pp. 437-447
  • Seneviratne, S.I., Lüthi, D., Litschi, M., Schär, C., Land-atmosphere coupling and climate change in Europe (2006) Nature, 443, pp. 205-209
  • Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Teuling, A.J., Investigating soil moisture–climate interactions in a changing climate:a review (2010) Earth-Sci Rev, 99 (3), pp. 125-161
  • Sörensson, A.A., Menéndez, C.G., Summer soil-precipitation coupling in South America (2011) Tellus, 63A, pp. 56-68
  • Spennemann, P.C., Saulo, A.C., An estimation of the land-atmosphere coupling strength in South America using the Global Land Data assimilation system (2015) Int J Climatol, 35, pp. 4151-4166
  • Spennemann, P.C., Salvia, M., Ruscica, R.C., Sörensson, A.A., Grings, F., Karszenbaum, H., Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models (2018) Int J Appl Earth Obs Geoinf, 64, pp. 96-103
  • Thomasz, O.E., Vilker, A.S., Rondinone, G., The economic cost of extreme and severe droughts in soybean production in Argentina (2019) Contaduría y Administración, 64 (1), pp. 1-24
  • Van Leer, B., Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection (1977) J Comput Phys, 23, pp. 276-299
  • Wing, G.Y.K., Sushama, L., Diro, G.T., The intraannual variability of land atmosphere coupling over North America in the Canadian regional climate model (CRCM5) (2016) J Geophys Res, 121, pp. 13,859-13,885
  • Zaninelli, P.G., Menéndez, C.G., Falco, M., López-Franca, N., Carril, A.F., Future hydroclimatological changes in South America based on an ensemble of regional climate models (2018) Clim Dyn
  • Zou, L.W., Zhou, T.J., Li, L., Zhang, J., East China Summer rainfall variability of 1958–2000: dynamical downscaling with a variable-resolution AGCM (2010) J Clim, 23, pp. 6394-6408


---------- APA ----------
Menéndez, C.G., Giles, J., Ruscica, R., Zaninelli, P., Coronato, T., Falco, M., Sörensson, A.,..., Li, L. (2019) . Temperature variability and soil–atmosphere interaction in South America simulated by two regional climate models. Climate Dynamics.
---------- CHICAGO ----------
Menéndez, C.G., Giles, J., Ruscica, R., Zaninelli, P., Coronato, T., Falco, M., et al. "Temperature variability and soil–atmosphere interaction in South America simulated by two regional climate models" . Climate Dynamics (2019).
---------- MLA ----------
Menéndez, C.G., Giles, J., Ruscica, R., Zaninelli, P., Coronato, T., Falco, M., et al. "Temperature variability and soil–atmosphere interaction in South America simulated by two regional climate models" . Climate Dynamics, 2019.
---------- VANCOUVER ----------
Menéndez, C.G., Giles, J., Ruscica, R., Zaninelli, P., Coronato, T., Falco, M., et al. Temperature variability and soil–atmosphere interaction in South America simulated by two regional climate models. Clim. Dyn. 2019.