Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We propose a neonization method to deal with molecules composed by hydrides of the second row of the periodic table of elements: CH4, NH3, OH2 and FH. This method describes these ten-electron molecules as dressed atoms in a pseudo-spherical potential. We test it by covering most of the inelastic collisional magnitudes of experimental interest: ionization cross sections (total, single and double differential), stopping power, energy-loss straggling and mean excitation energy. To this end, the neonization method has been treated with different collisional formalisms, such as the continuum-distorted-wave- eikonal-initial-state, the first order Born, and the shell-wise local plasma approximations. We show that the present model reproduces the different empirical values with high reliability in the intermediate to high-energy region. We also include the expansion of the spherical wave functions in terms of Slater-type orbitals and the analytic expression for the spherical potentials. This makes it possible in the future to tackle present neonization strategy with other collisional models. © 2014 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Neonization method for stopping, mean excitation energy, straggling, and for total and differential ionization cross sections of CH4, NH3, H2O and FH by impact of heavy projectiles
Autor:Montanari, C.C.; Miraglia, J.E.
Filiación:Instituto de Astronomía y Física Del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 (C1428EGA), Buenos Aires, Argentina
Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Analytic expressions; Continuum distorted waves; Ionization cross section; Mean excitation energy; Periodic table of elements; Slater-type orbitals; Spherical potentials; Spherical wave functions; Collisional plasmas; Excitation energy; Molecules; Spheres; Ionization
Año:2014
Volumen:47
Número:1
DOI: http://dx.doi.org/10.1088/0953-4075/47/1/015201
Título revista:Journal of Physics B: Atomic, Molecular and Optical Physics
Título revista abreviado:J Phys B At Mol Opt Phys
ISSN:09534075
CODEN:JPAPE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09534075_v47_n1_p_Montanari

Referencias:

  • Moccia, R., (1964) J. Chem. Phys., 40, p. 2164. , 10.1063/1.1725489
  • Moccia, R., (1964) J. Chem. Phys., 40, p. 2176. , 10.1063/1.1725490
  • Moccia, R., (1964) J. Chem. Phys., 40, p. 2186. , 10.1063/1.1725491
  • Fainstein, P.D., Olivera, G.H., Rivarola, R.D., (1996) Nucl. Instrum. Methods Phys. Res., 107, p. 19. , 10.1016/0168-583X(95)00810-1 0168-583X B
  • Olivera, G.H., Fainstein, P.D., Rivarola, R.D., Contribution from the inner shell of water vapour to dose profiles under proton and alpha particle irradiation (1996) Physics in Medicine and Biology, 41 (9), pp. 1633-1647. , DOI 10.1088/0031-9155/41/9/005
  • Nandi, S., Biswas, S., Khan, A., Monti, J.M., Tachino, C.A., Rivarola, R.D., Misra, D., Tribedi, L.C., (2013) Phys. Rev., 87. , 10.1103/PhysRevA.87.052710 A 052710
  • Champion, C., Galassi, M.E., Weck, P.F., Fojón, O., Hanssen, J., Rivarola, R.D., García Gómez-Tejedor, G., Fuss, M., Quantum-mechanical contributions to numerical simulations of charged particle transport at the DNA scale (2012) Radiation Damage in Biomolecular Systems, pp. 263-290. , 10.1007/978-94-007-2564-5
  • Champion, C., Rivarola, R.D., (2010) Phys. Rev., 82. , 10.1103/PhysRevA.82.042704 A 042704
  • Champion, C., (2010) Phys. Med. Biol., 55 (1), pp. 11-32. , 10.1088/0031-9155/55/1/002 0031-9155 002
  • Champion, C., Dal Cappello, C., (2009) Nucl. Instrum. Methods Phys. Res., 267, pp. 881-884. , 10.1016/j.nimb.2009.02.040 0168-583X B
  • Boudrioua, O., Champion, C., Dal Cappello, C., Popov, Y.V., Ab initio calculation of differential and total cross sections for the ionization of water vapor by protons (2007) Physical Review A - Atomic, Molecular, and Optical Physics, 75 (2), p. 022720. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevA.75.022720&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevA.75.022720
  • Champion, C., Boudrioua, O., Dal Cappello, C., (2008) J. Phys.: Conf. Ser., 101 (1). , 10.1088/1742-6596/101/1/012010 1742-6596 012010
  • Champion, C., Theoretical cross sections for electron collisions in water: Structure of electron tracks (2003) Physics in Medicine and Biology, 48 (14), pp. 2147-2168. , DOI 10.1088/0031-9155/48/14/308, PII S0031915503583464
  • Rudd, M.E., Goffe, T.V., Dubois, R.D., Toburen, L.H., (1985) Phys. Rev., 31, p. 492. , 10.1103/PhysRevA.31.492 0556-2791 A
  • Rudd, M.E., Itoh, A., Goffe, T.V., (1985) Phys. Rev., 32, p. 2499. , 10.1103/PhysRevA.32.2499 0556-2791 A
  • Rudd, M.E., Kim, Y.-K., Madison, D.H., Gay, Y.J., (1992) Rev. Mod. Phys., 64, p. 441. , 10.1103/RevModPhys.64.441 0034-6861
  • Toburen, L.H., Wilson, W.E., (1977) J. Chem. Phys., 66, p. 5202. , 10.1063/1.433783
  • Bolorizadeh, M.A., Rudd, M.E., (1986) Phys. Rev., 33, p. 888. , 10.1103/PhysRevA.33.888 0556-2791 A
  • Bolorizadeh, M.A., Rudd, M.E., (1986) Phys. Rev., 33, p. 893. , 10.1103/PhysRevA.33.893 0556-2791 A
  • Miller, J.H., Wilson, W.E., Manson, S.T., Rudd, M.E., (1987) J. Chem. Phys., 86, p. 157. , 10.1063/1.452774
  • Paul, H., (2013) Stopping Power for Light Ions
  • Ziegler, J.F., (2013) The Stopping and Range of Ions in Matter
  • Shimizu, M., Kaneda, M., Hayakawa, T., Tsuchida, H., Itoh, A., (2009) Nucl. Instrum. Methods Phys. Res., 267, p. 2667. , 10.1016/j.nimb.2009.05.036 0168-583X B
  • Shimizu, M., Kaneda, M., Hayakawa, T., Tsuchida, H., Itoh, A., (2010) Vacuum, 84, p. 1002. , 10.1016/j.vacuum.2009.11.019
  • Siiskonen, T., Kettunen, H., Peräjärvi, K., Javanainen, A., Rossi, M., Trzaska, W.H., Turunen, J., Virtanen, A., (2011) Phys. Med. Biol., 56 (8), pp. 2367-2374. , 10.1088/0031-9155/56/8/003 0031-9155 003
  • Garcia-Molina, R., Abril, I., De Vera, B.P., Paul, H., (2013) Nucl. Instrum. Methods Phys. Res., 299, pp. 51-53. , 10.1016/j.nimb.2013.01.038 0168-583X B
  • Mitterschiffthaler Christian, Bauer Peter, Stopping cross section of water vapor for hydrogen ions (1990) Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 48 (1-4), pp. 58-60. , DOI 10.1016/0168-583X(90)90073-4
  • Phillips, J.A., (1953) Phys. Rev., 90, p. 532. , 10.1103/PhysRev.90.532 A
  • Baek, W.Y., Grosswendt, B., Willems, G., Ionization ranges of protons in water vapour in the energy range 1-100 keV (2006) Radiation Protection Dosimetry, 122 (1-4), pp. 32-35. , DOI 10.1093/rpd/ncl514
  • Reynolds, H.K., Dunbar, F.D.N., Wenzel, W.A., Whaling, W., (1953) Phys. Rev., 92, p. 742. , 10.1103/PhysRev.92.742
  • Besemer, A., Paganetti, H., Bednarz, B., (2013) Phys. Med. Biol., 58 (4), pp. 887-902. , 10.1088/0031-9155/58/4/887 0031-9155 887
  • Paganetti, H., (2012) Phys. Med. Biol., 57 (11), p. 99. , 10.1088/0031-9155/57/11/R99 0031-9155 R99
  • Garcia-Molina, R., Abril, I., Heredia-Avalos, S., Kyriakou, I., Emfietzoglou, D., (2011) Phys. Med. Biol., 56 (19), pp. 6475-6493. , 10.1088/0031-9155/56/19/019 0031-9155 019
  • (1993) Stopping Power and Ranges for Protons and Alpha Particles, , ICRU
  • (2005) Stopping of Ions Heavier Than Helium, , ICRU
  • Sigmund, P., Schinner, A., Paul, H., (2009) Stopping of Ions Heavier Than Helium
  • Bichsel, H., Hiraoka, T., (1992) Nucl. Instrum. Methods Phys. Res., 66, pp. 345-351. , 10.1016/0168-583X(92)95995-4 0168-583X B
  • Bichsel, H., Hiraoka, T., Omata, K., (2000) Radiat. Res., 153, p. 208. , 10.1667/0033-7587(2000)153[0208:AOFID]2.0.CO;2 0033-7587
  • Krämer, M., Jäkel, O., Haberer, T., Kraft, G., Schardt, D., Weber, U., (2000) Phys. Med. Biol., 45 (11), p. 3299. , 10.1088/0031-9155/45/11/313 0031-9155 313
  • Emfietzoglou, D., Pathak, A., Papamichael, G., Kostarelos, K., Dhamodaran, S., Sathish, N., Moscovitch, M., A study on the electronic stopping of protons in soft biological matter (2006) Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 242 (1-2), pp. 55-60. , DOI 10.1016/j.nimb.2005.08.001, PII S0168583X05014680
  • Kumazaki, Y., Akagi, T., Yanou, T., Suga, D., Hishikawa, Y., Teshima, T., Determination of the mean excitation energy of water from proton beam ranges (2007) Radiation Measurements, 42 (10), pp. 1683-1691. , DOI 10.1016/j.radmeas.2007.10.019, PII S135044870700409X
  • Dingfelder, M., Hantke, D., Inokuti, M., Paretzke, H.G., (1999) Radiat. Phys. Chem., 53, pp. 1-18. , 10.1016/S0969-806X(97)00317-4 0969-806X
  • Garcia-Molina, R., Abril, I., Denton, C.D., Heredia-Avalos, S., Kyriakou, I., Emfietzoglou, D., (2009) Nucl. Instrum. Methods Phys. Res., 267, pp. 2647-2652. , 10.1016/j.nimb.2009.05.038 0168-583X B
  • Kamakura, S., Sakamoto, N., Ogawa, H., Tsuchida, H., Inokuti, M., Mean excitation energies for the stopping power of atoms and molecules evaluated from oscillator-strength spectra (2006) Journal of Applied Physics, 100 (6), p. 064905. , DOI 10.1063/1.2345478
  • Sauer, S.P.A., Sabin, J.R., Oddershede, J., (1995) Nucl. Instrum. Methods Phys. Res., 100, pp. 458-463. , 10.1016/0168-583X(95)00370-3 0168-583X B
  • Paul, H., Geithner, O., Jakel, O., The ratio of stopping powers of water and air for dosimetry applications in tumor therapy (2007) Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 256 (1), pp. 561-564. , DOI 10.1016/j.nimb.2006.12.072, PII S0168583X06013115
  • Sabin, J.R., Oddershede, J., Sauer Belkic Dz, S.P.A., On the determination of the mean excitation energy of water (2013) Advances in Quantum Chemistry, 65, pp. 63-77. , 10.1016/B978-0-12-396455-7.00003-0
  • Rudd, M.E., Dubois, R.D., Toburen, L.H., Ratcliffe, C.A., Goffe, T.V., (1983) Phys. Rev., 28, pp. 3244-3257. , 10.1103/PhysRevA.28.3244 0556-2791 A
  • Rudd, M.E., Kim, Y.-K., Madison, D.H., Gallagher, J.W., (1985) Rev. Mod. Phys., 57, p. 965. , 10.1103/RevModPhys.57.965 0034-6861
  • Lynch, D.J., Toburen, L.H., Wilson, W.E., (1976) J. Chem. Phys., 64, p. 2616. , 10.1063/1.432515
  • McNeal, R.J., (1970) J. Chem. Phys., 53, p. 4308. , 10.1063/1.1673938
  • Wilson, W.E., Toburen, L.H., (1975) Phys. Rev., 11, p. 1303. , 10.1103/PhysRevA.11.1303 0556-2791 A
  • Wilson, W.E., Miller, J.H., Toburen, L.H., Manson, S.T., (1984) J. Chem. Phys., 80, p. 5631. , 10.1063/1.446628
  • Galassi, M.E., Rivarola, R.D., Beuve, M., Olivera, G.H., Fainstein, P.D., (2000) Phys. Rev., 62. , 10.1103/PhysRevA.62.022701 A 022701
  • Galassi, M.E., Abufager, P.N., Fainstein, P.D., Rivarola, R.D., (2010) Phys. Rev., 81. , 10.1103/PhysRevA.81.062713 A 062713
  • Fernandez-Menchero, L., Otranto, S., (2010) Phys. Rev., 82. , 10.1103/PhysRevA.82.022712 A 022712
  • Bourland, P.D., Chu, K., Powers, D., (1971) Phys. Rev., 3, p. 3625. , 10.1103/PhysRevB.3.3625 0556-2805 B
  • Bourland, P.D., Powers, D., (1971) Phys. Rev., 3, p. 3635. , 10.1103/PhysRevB.3.3635 0556-2805 B
  • Fainstein, P.D., Ponce, V.H., Rivarola, R.D., (1991) J. Phys. B: At. Mol. Opt. Phys., 24 (14), pp. 3091-3119. , 10.1088/0953-4075/24/14/005 0953-4075 005
  • Montanari, C.C., Miraglia Belkic Dz, J.E., The dielectric formalism for inelastic processes in high energy ion-matter collisions (2013) Advances in Quantum Chemistry, 65, pp. 165-201. , 10.1016/B978-0-12-396455-7.00007-8
  • Levine, Z.H., Louie, S.G., (1982) Phys. Rev., 25, p. 6310. , 10.1103/PhysRevB.25.6310 0163-1829 B
  • Moskowitz, W., Harrison, M.C., (1965) J. Chem. Phys., 43, p. 3550. , 10.1063/1.1696516
  • Poet, R., (1978) J. Phys. B: At. Mol. Phys., 11 (17), p. 3081. , 10.1088/0022-3700/11/17/019 0022-3700 019
  • http://www3.nd.edu/Johnson/Class01F/nrhf.f; Clementi, E., (1990) Modern Techniques in Computational Chemistry: MOTECC-90, p. 111. , 10.1007/978-94-009-2219-8
  • Zhan, C.-G., Nichols, J.A., Dixon, D.A., (2003) J. Phys. Chem., 107, p. 4184. , 10.1021/jp0225774 A
  • Gross, E.K.U., Dreizler, R.M., (1995) Density Functional Theory, , 10.1007/978-1-4757-9975-0
  • Becke, A., (1988) Phys. Rev., 38, p. 3098. , 10.1103/PhysRevA.38.3098 0556-2791 A
  • Lee, H., Lee, C.H., Parr, R.G., (1991) Phys. Rev., 44, p. 768. , 10.1103/PhysRevA.44.768 A
  • Montanari, C.C., Mitnik, D.M., Archubi, C.D., Miraglia, J.E., (2009) Phys. Rev., 80. , 10.1103/PhysRevA.80.012901 A 012901
  • Cantero, E.D., Fadanelli, R.C., Montanari, C.C., Behar, M., Eckardt, J.C., Lantschner, G.H., Miraglia, J.E., Arista, N.R., (2009) Phys. Rev., 79. , 10.1103/PhysRevA.79.042904 A 042904
  • Montanari, C.C., Mitnik, D.M., Miraglia, J.E., (2011) Radiat. Eff. Defects Solids, 166, pp. 338-345. , 10.1080/10420150.2011.572284
  • Montanari, C.C., Miraglia, J.E., The energy loss straggling of low Z ions in solids and gases (2013) AIP Conf. Proc., 1525, pp. 259-269. , 10.1063/1.4802331 0094-243X
  • Salvat, F., Fernández-Varea, J.M., Williamson, Jr.W., (1995) Comput. Phys. Commun., 90, p. 151. , 10.1016/0010-4655(95)00039-I 0010-4655
  • Miraglia, J.E., Gravielle, M.S., (2011) Phys. Rev., 84. , 10.1103/PhysRevA.84.062901 A 062901
  • Bethe, (1930) Ann. Phys., 397 (3), p. 325. , 10.1002/andp.19303970303 0003-3804
  • Werner, U., Beckord, K., Becker, J., Lutz, H.O., (1995) Phys. Rev. Lett., 74, p. 1962. , 10.1103/PhysRevLett.74.1962
  • Gobet, F., Farizon, B., Farizon, M., Gaillard, M.J., Carre, M., Lezius, M., Scheier, P., Mark, T.D., Total, partial, and electron-capture cross sections for ionization of water vapor by 20-150 keV protons (2001) Physical Review Letters, 86 (17), pp. 3751-3754. , DOI 10.1103/PhysRevLett.86.3751
  • Luna, H., De Barros, A.L.F., Wyer, J.A., Scully, S.W.J., Laconte, J., Garcia, P.M.Y., Sigaud, G.M., Montenegro, E.C., Water-molecule dissociation by proton and hydrogen impact (2007) Physical Review A - Atomic, Molecular, and Optical Physics, 75 (4), p. 042711. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevA.75.042711&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevA.75.042711
  • Raot, M.V.V.S., Srivastava, S.K., (1992) J. Phys. B: At. Mol. Opt. Phys., 25 (9), pp. 2175-2187. , 10.1088/0953-4075/25/9/021 0953-4075 021
  • Itikawa, Y., Mason, N., Cross sections for electron collisions with water molecules (2005) Journal of Physical and Chemical Reference Data, 34 (1), pp. 1-22. , DOI 10.1063/1.1799251
  • Errea, L.F., Illescas, C., Méndez, L., Rabadán, I., (2013) Phys. Rev., 87. , 10.1103/PhysRevA.87.032709 A 032709
  • Bauer, P., Käferböck, W., Necas, V., (1994) Nucl. Instrum. Methods Phys. Res., 93, p. 132. , 10.1016/0168-583X(94)95677-4 0168-583X B
  • Paul Belkic Dz, H., On the accuracy of stopping power codes and ion ranges used for hadron therapy (2013) Advances in Quantum Chemistry, 65, pp. 39-61. , 10.1016/B978-0-12-396455-7.00002-9
  • Dagnac, R., Blanc, D., Molina, D., (1970) J. Phys. B: At. Mol. Phys., 3 (9), pp. 1239-1251. , 10.1088/0022-3700/3/9/007 0022-3700 007
  • Toburen, L.H., Nakai, M.Y., Langley, R.A., (1968) Phys. Rev., 171, p. 114. , 10.1103/PhysRev.171.114
  • Uehara, S., Toburen, L.H., Wilson, W.E., Goodhead, D.T., Nikjoo, H., Calculations of electronic stopping cross sections for low-energy protons in water (2000) Radiation Physics and Chemistry, 59 (1), pp. 1-11. , DOI 10.1016/S0969-806X(00)00190-0, PII S0969806X00001900
  • Francis, Z., Incerti, S., Karamitros, M., Tran, H.N., Villagrasa, C., (2011) Nucl. Instrum. Methods Phys. Res., 269, pp. 2307-2311. , 10.1016/j.nimb.2011.02.031 0168-583X B
  • Tschalar, C., Bichsel, H., (1968) Phys. Rev., 175, p. 476. , 10.1103/PhysRev.175.476
  • Schardt, D., Steidl, P., Krämer, M., Weber, U., Parodi, K., Brons, S., (2008) Precision Bragg-curve Measurements for Light-ion Beams in Water
  • Seltzer, S.M., (1989) NIST Electron and Positron Stopping Powers of Material Database, NIST Standard Reference Database 7
  • (1984) Stopping Powers for Electrons and Positions, , ICRU
  • Besenbacher, F., Andersen, J.U., Bonderup, E., (1980) Nucl. Instrum. Methods, 168, p. 1. , 10.1016/0029-554X(80)91224-0 0029-554X
  • Livingston, M.S., Bethe, H.A., (1937) Rev. Mod. Phys., 9, pp. 245-290. , 10.1103/RevModPhys.9.245 0034-6861
  • Sigmund, P., Schinner, A., Barkas effect, shell correction, screening and correlation in collisional energy-loss straggling of an ion beam (2003) European Physical Journal D, 23 (2), pp. 201-209. , DOI 10.1140/epjd/e2003-00032-x
  • Emfietzoglou, D., Cucinotta, F.A., Nikjoo, H., A complete dielectric response model for liquid water: A solution of the Bethe Ridge problem (2005) Radiation Research, 164 (2), pp. 202-211. , DOI 10.1667/RR3399
  • Garcia-Molina, R., Abril, I., Kyriakou, I., Emfietzoglou, D., García Gómez-Tejedor, G., Fuss, M., Energy loss of swift protons in liquid water: Role of optical data input and extension algorithms (2012) Radiation Damage in Biomolecular Systems, pp. 239-262. , 10.1007/978-94-007-2564-5

Citas:

---------- APA ----------
Montanari, C.C. & Miraglia, J.E. (2014) . Neonization method for stopping, mean excitation energy, straggling, and for total and differential ionization cross sections of CH4, NH3, H2O and FH by impact of heavy projectiles. Journal of Physics B: Atomic, Molecular and Optical Physics, 47(1).
http://dx.doi.org/10.1088/0953-4075/47/1/015201
---------- CHICAGO ----------
Montanari, C.C., Miraglia, J.E. "Neonization method for stopping, mean excitation energy, straggling, and for total and differential ionization cross sections of CH4, NH3, H2O and FH by impact of heavy projectiles" . Journal of Physics B: Atomic, Molecular and Optical Physics 47, no. 1 (2014).
http://dx.doi.org/10.1088/0953-4075/47/1/015201
---------- MLA ----------
Montanari, C.C., Miraglia, J.E. "Neonization method for stopping, mean excitation energy, straggling, and for total and differential ionization cross sections of CH4, NH3, H2O and FH by impact of heavy projectiles" . Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 47, no. 1, 2014.
http://dx.doi.org/10.1088/0953-4075/47/1/015201
---------- VANCOUVER ----------
Montanari, C.C., Miraglia, J.E. Neonization method for stopping, mean excitation energy, straggling, and for total and differential ionization cross sections of CH4, NH3, H2O and FH by impact of heavy projectiles. J Phys B At Mol Opt Phys. 2014;47(1).
http://dx.doi.org/10.1088/0953-4075/47/1/015201